Labounek René, Bridwell David A, Mareček Radek, Lamoš Martin, Mikl Michal, Slavíček Tomáš, Bednařík Petr, Baštinec Jaromír, Hluštík Petr, Brázdil Milan, Jan Jiří
Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic.
Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
Brain Topogr. 2018 Jan;31(1):76-89. doi: 10.1007/s10548-017-0585-8. Epub 2017 Sep 5.
Electroencephalography (EEG) oscillations reflect the superposition of different cortical sources with potentially different frequencies. Various blind source separation (BSS) approaches have been developed and implemented in order to decompose these oscillations, and a subset of approaches have been developed for decomposition of multi-subject data. Group independent component analysis (Group ICA) is one such approach, revealing spatiospectral maps at the group level with distinct frequency and spatial characteristics. The reproducibility of these distinct maps across subjects and paradigms is relatively unexplored domain, and the topic of the present study. To address this, we conducted separate group ICA decompositions of EEG spatiospectral patterns on data collected during three different paradigms or tasks (resting-state, semantic decision task and visual oddball task). K-means clustering analysis of back-reconstructed individual subject maps demonstrates that fourteen different independent spatiospectral maps are present across the different paradigms/tasks, i.e. they are generally stable.
脑电图(EEG)振荡反映了具有潜在不同频率的不同皮质源的叠加。为了分解这些振荡,已经开发并实施了各种盲源分离(BSS)方法,并且已经开发了用于分解多主体数据的方法子集。组独立成分分析(Group ICA)就是这样一种方法,它在组水平上揭示具有不同频率和空间特征的时空频谱图。这些不同图谱在不同主体和范式间的可重复性是一个相对未被探索的领域,也是本研究的主题。为了解决这个问题,我们对在三种不同范式或任务(静息状态、语义决策任务和视觉Oddball任务)期间收集的数据进行了单独的脑电图时空频谱模式组独立成分分析分解。对反向重建的个体受试者图谱进行K均值聚类分析表明,在不同范式/任务中存在14种不同的独立时空频谱图,即它们总体上是稳定的。