Suppr超能文献

粪卟啉原III氧化酶的晶体结构揭示了自由基S-腺苷甲硫氨酸酶的辅因子几何结构。

Crystal structure of coproporphyrinogen III oxidase reveals cofactor geometry of Radical SAM enzymes.

作者信息

Layer Gunhild, Moser Jürgen, Heinz Dirk W, Jahn Dieter, Schubert Wolf-Dieter

机构信息

Institute of Microbiology, Technical University Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany.

出版信息

EMBO J. 2003 Dec 1;22(23):6214-24. doi: 10.1093/emboj/cdg598.

Abstract

'Radical SAM' enzymes generate catalytic radicals by combining a 4Fe-4S cluster and S-adenosylmethionine (SAM) in close proximity. We present the first crystal structure of a Radical SAM enzyme, that of HemN, the Escherichia coli oxygen-independent coproporphyrinogen III oxidase, at 2.07 A resolution. HemN catalyzes the essential conversion of coproporphyrinogen III to protoporphyrinogen IX during heme biosynthesis. HemN binds a 4Fe-4S cluster through three cysteine residues conserved in all Radical SAM enzymes. A juxtaposed SAM coordinates the fourth Fe ion through its amide nitrogen and carboxylate oxygen. The SAM sulfonium sulfur is near both the Fe (3.5 A) and a neighboring sulfur of the cluster (3.6 A), allowing single electron transfer from the 4Fe-4S cluster to the SAM sulfonium. SAM is cleaved yielding a highly oxidizing 5'-deoxyadenosyl radical. HemN, strikingly, binds a second SAM immediately adjacent to the first. It may thus successively catalyze two propionate decarboxylations. The structure of HemN reveals the cofactor geometry required for Radical SAM catalysis and sets the stage for the development of inhibitors with antibacterial function due to the uniquely bacterial occurrence of the enzyme.

摘要

“自由基S-腺苷甲硫氨酸”(Radical SAM)酶通过使一个4Fe-4S簇和S-腺苷甲硫氨酸(SAM)紧密靠近来产生催化性自由基。我们报道了一种Radical SAM酶的首个晶体结构,即大肠杆菌中不依赖氧气的粪卟啉原III氧化酶HemN的晶体结构,分辨率为2.07埃。HemN在血红素生物合成过程中催化粪卟啉原III向原卟啉原IX的关键转化。HemN通过所有Radical SAM酶中保守的三个半胱氨酸残基结合一个4Fe-4S簇。一个并列的SAM通过其酰胺氮和羧酸盐氧来配位第四个铁离子。SAM的锍硫既靠近铁(3.5埃)又靠近簇的相邻硫(3.6埃),使得单电子从4Fe-4S簇转移至SAM的锍。SAM被裂解产生一个高氧化性的5'-脱氧腺苷自由基。引人注目的是,HemN紧邻第一个SAM结合第二个SAM。因此它可能相继催化两次丙酸脱羧反应。HemN的结构揭示了Radical SAM催化所需的辅因子几何结构,并为开发具有抗菌功能的抑制剂奠定了基础,因为该酶独特地存在于细菌中。

相似文献

3
Structure and function of radical SAM enzymes.
Curr Opin Chem Biol. 2004 Oct;8(5):468-76. doi: 10.1016/j.cbpa.2004.08.001.
4
Revisiting the Mechanism of the Anaerobic Coproporphyrinogen III Oxidase HemN.
Angew Chem Int Ed Engl. 2019 May 6;58(19):6235-6238. doi: 10.1002/anie.201814708. Epub 2019 Apr 1.
5
Structural and functional comparison of HemN to other radical SAM enzymes.
Biol Chem. 2005 Oct;386(10):971-80. doi: 10.1515/BC.2005.113.
6
Oxygen-independent coproporphyrinogen-III oxidase HemN from Escherichia coli.
J Biol Chem. 2002 Sep 13;277(37):34136-42. doi: 10.1074/jbc.M205247200. Epub 2002 Jul 11.
7
The Radical SAM Superfamily.
Crit Rev Biochem Mol Biol. 2008 Jan-Feb;43(1):63-88. doi: 10.1080/10409230701829169.
8
S-adenosylmethionine radical enzymes.
Bioorg Chem. 2004 Oct;32(5):326-40. doi: 10.1016/j.bioorg.2004.06.001.
9
Substrate-Dependent Cleavage Site Selection by Unconventional Radical S-Adenosylmethionine Enzymes in Diphthamide Biosynthesis.
J Am Chem Soc. 2017 Apr 26;139(16):5680-5683. doi: 10.1021/jacs.7b01712. Epub 2017 Apr 13.
10
Radical-mediated enzymatic methylation: a tale of two SAMS.
Acc Chem Res. 2012 Apr 17;45(4):555-64. doi: 10.1021/ar200202c. Epub 2011 Nov 18.

引用本文的文献

2
Initiation, Propagation, and Termination in the Chemistry of Radical SAM Enzymes.
Biochemistry. 2024 Dec 17;63(24):3161-3183. doi: 10.1021/acs.biochem.4c00518. Epub 2024 Dec 3.
3
Proteomic strategies to interrogate the Fe-S proteome.
Biochim Biophys Acta Mol Cell Res. 2024 Oct;1871(7):119791. doi: 10.1016/j.bbamcr.2024.119791. Epub 2024 Jun 25.
5
harbors a hypoxia-responsive coproporphyrinogen dehydrogenase-like protein.
mSphere. 2024 Mar 26;9(3):e0009224. doi: 10.1128/msphere.00092-24. Epub 2024 Feb 27.
6
harbors a hypoxia-responsive coproporphyrinogen dehydrogenase-like protein.
bioRxiv. 2023 Nov 16:2023.11.16.567449. doi: 10.1101/2023.11.16.567449.
8
The Radical SAM Heme Synthase AhbD from Contains Two Auxiliary [4Fe-4S] Clusters.
Biomolecules. 2023 Aug 18;13(8):1268. doi: 10.3390/biom13081268.
9
Structural aspects of enzymes involved in prokaryotic Gram-positive heme biosynthesis.
Comput Struct Biotechnol J. 2023 Jul 24;21:3933-3945. doi: 10.1016/j.csbj.2023.07.024. eCollection 2023.
10
Cluster-selective Fe labeling of a Twitch-domain-containing radical SAM enzyme.
Chem Sci. 2023 Jun 2;14(27):7492-7499. doi: 10.1039/d3sc02016a. eCollection 2023 Jul 12.

本文引用的文献

2
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
3
Refinement of macromolecular structures by the maximum-likelihood method.
Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55. doi: 10.1107/S0907444996012255.
4
Automated refinement of protein models.
Acta Crystallogr D Biol Crystallogr. 1993 Jan 1;49(Pt 1):129-47. doi: 10.1107/S0907444992008886.
5
The CCP4 suite: programs for protein crystallography.
Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3. doi: 10.1107/S0907444994003112.
6
Many paths to methyltransfer: a chronicle of convergence.
Trends Biochem Sci. 2003 Jun;28(6):329-35. doi: 10.1016/S0968-0004(03)00090-2.
8
S-Adenosylmethionine: a wolf in sheep's clothing, or a rich man's adenosylcobalamin?
Chem Rev. 2003 Jun;103(6):2129-48. doi: 10.1021/cr020422m.
9
The generation of 5'-deoxyadenosyl radicals by adenosylmethionine-dependent radical enzymes.
Curr Opin Chem Biol. 2003 Apr;7(2):174-82. doi: 10.1016/s1367-5931(03)00022-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验