Suppr超能文献

使用组独立成分分析方法进行功能磁共振成像分析的盲源分离算法性能

Performance of blind source separation algorithms for fMRI analysis using a group ICA method.

作者信息

Correa Nicolle, Adali Tülay, Calhoun Vince D

机构信息

Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA.

出版信息

Magn Reson Imaging. 2007 Jun;25(5):684-94. doi: 10.1016/j.mri.2006.10.017. Epub 2006 Dec 8.

Abstract

Independent component analysis (ICA) is a popular blind source separation technique that has proven to be promising for the analysis of functional magnetic resonance imaging (fMRI) data. A number of ICA approaches have been used for fMRI data analysis, and even more ICA algorithms exist; however, the impact of using different algorithms on the results is largely unexplored. In this paper, we study the performance of four major classes of algorithms for spatial ICA, namely, information maximization, maximization of non-Gaussianity, joint diagonalization of cross-cumulant matrices and second-order correlation-based methods, when they are applied to fMRI data from subjects performing a visuo-motor task. We use a group ICA method to study variability among different ICA algorithms, and we propose several analysis techniques to evaluate their performance. We compare how different ICA algorithms estimate activations in expected neuronal areas. The results demonstrate that the ICA algorithms using higher-order statistical information prove to be quite consistent for fMRI data analysis. Infomax, FastICA and joint approximate diagonalization of eigenmatrices (JADE) all yield reliable results, with each having its strengths in specific areas. Eigenvalue decomposition (EVD), an algorithm using second-order statistics, does not perform reliably for fMRI data. Additionally, for iterative ICA algorithms, it is important to investigate the variability of estimates from different runs. We test the consistency of the iterative algorithms Infomax and FastICA by running the algorithm a number of times with different initializations, and we note that they yield consistent results over these multiple runs. Our results greatly improve our confidence in the consistency of ICA for fMRI data analysis.

摘要

独立成分分析(ICA)是一种流行的盲源分离技术,已被证明在功能磁共振成像(fMRI)数据分析方面很有前景。许多ICA方法已被用于fMRI数据分析,甚至存在更多的ICA算法;然而,使用不同算法对结果的影响在很大程度上尚未得到探索。在本文中,我们研究了四类主要的空间ICA算法,即信息最大化、非高斯性最大化、交叉累积量矩阵联合对角化和基于二阶相关性的方法,在应用于执行视觉运动任务的受试者的fMRI数据时的性能。我们使用组ICA方法来研究不同ICA算法之间的变异性,并提出了几种分析技术来评估它们的性能。我们比较了不同ICA算法如何估计预期神经元区域的激活情况。结果表明,使用高阶统计信息的ICA算法在fMRI数据分析中表现出相当的一致性。信息最大化算法(Infomax)、快速独立成分分析(FastICA)和特征矩阵联合近似对角化(JADE)都产生了可靠的结果,每种算法在特定领域都有其优势。特征值分解(EVD),一种使用二阶统计量的算法,在fMRI数据中表现不可靠。此外,对于迭代ICA算法,研究不同运行估计的变异性很重要。我们通过使用不同的初始化多次运行Infomax和FastICA算法来测试它们的一致性,并且我们注意到它们在这些多次运行中产生了一致的结果。我们的结果大大提高了我们对ICA在fMRI数据分析中的一致性的信心。

相似文献

4
Analysis of fMRI data by blind separation into independent spatial components.通过盲分离为独立空间成分对功能磁共振成像数据进行分析。
Hum Brain Mapp. 1998;6(3):160-88. doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1.

引用本文的文献

4
aXonica: A support package for MRI based Neuroimaging.Axonica:一个基于磁共振成像的神经成像支持软件包。
Biotechnol Notes. 2024 Aug 22;5:120-136. doi: 10.1016/j.biotno.2024.08.001. eCollection 2024.
8
Group linear non-Gaussian component analysis with applications to neuroimaging.用于神经成像的组线性非高斯成分分析
Comput Stat Data Anal. 2022 Jul;171. doi: 10.1016/j.csda.2022.107454. Epub 2022 Feb 22.
10
Comparing the reliability of different ICA algorithms for fMRI analysis.比较 fMRI 分析中不同 ICA 算法的可靠性。
PLoS One. 2022 Jun 27;17(6):e0270556. doi: 10.1371/journal.pone.0270556. eCollection 2022.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验