Qiu Ping, Feng Xin Hua, Li Li
Department of Internal Medicine, Wayne State University, Detroit, MI 48201, USA.
J Mol Cell Cardiol. 2003 Dec;35(12):1407-20. doi: 10.1016/j.yjmcc.2003.09.002.
Myofibroblasts play important roles in a variety of developmental and pathological processes, such as vascular remodeling, atherosclerosis and wound healing. In this study, we used the TGF-beta1-treated 10T1/2 cells as an in vitro model to understand how Smad-mediated TGF-beta1 signals regulate SM22 promoter transcription during myofibroblast differentiation. We found that TGF-beta1 transiently induces SRF and SM22 transcription, and that this process is accompanied by transient increases of SRF and Smad3 binding to the SM22 promoter. Interestingly, Smad3, not Smad2, is the primary mediator for TGF-beta1-induced transactivation of the SM22 promoter, while Smad6 and Smad7 repress such a transactivation. Smad3 can bind to a Smad-binding element (SBE) in the first exon of SM22, and directly associate with the SRF complex in response to TGF-beta1 treatment. Moreover, Smad3 and I-Smads regulate the SM22 promoter through CArG box-dependent transcription using dominant-negative SRF mutants and SRF-VP16. Although SBE as well as CArG boxes and TGF-beta control element are all important for the SM22 promoter activities, the promoters with mutations at either one or all of them still respond to TGF-beta1 treatment. Consistently, TGF-beta1 stimulates SM22 transcription in Smad3 null mouse embryonic fibroblasts. These findings provide the first evidence that Smad3 directly links TGF-beta1 signaling to an SRF-associated regulatory network in controlling SM22 transcription; it also implies that TGF-beta1 regulates the SM22 promoter via Smad3-dependent and Smad3-independent pathways.
肌成纤维细胞在多种发育和病理过程中发挥重要作用,如血管重塑、动脉粥样硬化和伤口愈合。在本研究中,我们使用经转化生长因子-β1(TGF-β1)处理的10T1/2细胞作为体外模型,以了解Smad介导的TGF-β1信号在肌成纤维细胞分化过程中如何调节平滑肌22(SM22)启动子转录。我们发现TGF-β1可短暂诱导血清反应因子(SRF)和SM22转录,且该过程伴随着SRF和Smad3与SM22启动子结合的短暂增加。有趣的是,Smad3而非Smad2是TGF-β1诱导的SM22启动子反式激活的主要介导因子,而Smad6和Smad7则抑制这种反式激活。Smad3可与SM22第一外显子中的Smad结合元件(SBE)结合,并在TGF-β1处理后直接与SRF复合体相互作用。此外,Smad3和抑制性Smads通过使用显性负性SRF突变体和SRF-VP16,通过依赖于富含CC(A/T)6GG(CArG)框的转录来调节SM22启动子。尽管SBE以及CArG框和TGF-β控制元件对SM22启动子活性均很重要,但在其中一个或所有元件处发生突变的启动子仍对TGF-β1处理有反应。一致地,TGF-β1在Smad3基因敲除的小鼠胚胎成纤维细胞中刺激SM22转录。这些发现提供了首个证据,即Smad3在控制SM22转录过程中将TGF-β1信号直接与一个与SRF相关的调控网络联系起来;这也意味着TGF-β1通过依赖Smad3和不依赖Smad3的途径调节SM22启动子。