McCloskey Kara E, Chalmers Jeffrey J, Zborowski Maciej
Department of Chemical Engineering, The Ohio State University, 140 W. 19th Avenue, Columbus, Ohio 43210, USA.
Anal Chem. 2003 Dec 15;75(24):6868-74. doi: 10.1021/ac034315j.
Magnetic cell separation has become a popular technique to enrich or deplete cells of interest from a heterogeneous cell population. One important aspect of magnetic cell separation is the degree to which a cell binds paramagnetic material. It is this paramagnetic material that imparts a positive magnetophoretic mobility to the target cell, thus allowing effective cell separation. A mathematical relationship has been developed to correlate magnetic labeling to the magnetophoretic mobility of an immunomagnetically labeled cell. Four parameters have been identified that significantly affect magnetophoretic mobility of an immunomagnetically labeled cell: the antibody binding capacity (ABC) of a cell population, the secondary antibody amplification (psi), the particle-magnetic field interaction parameter (DeltachiV(m)), and the cell diameter (D(c)). The ranges of these parameters are calculated and presented along with how the parameters affect the minimum and maximum range of magnetophoretic mobility. A detailed understanding of these parameters allows predictions of cellular magnetophoretic mobilities and provides control of cell mobility through selection of antibodies and magnetic particle conjugates.
磁性细胞分离已成为从异质细胞群体中富集或去除目标细胞的一种常用技术。磁性细胞分离的一个重要方面是细胞与顺磁性材料结合的程度。正是这种顺磁性材料赋予目标细胞正向磁泳迁移率,从而实现有效的细胞分离。已建立了一种数学关系,将磁性标记与免疫磁性标记细胞的磁泳迁移率相关联。已确定四个参数会显著影响免疫磁性标记细胞的磁泳迁移率:细胞群体的抗体结合能力(ABC)、二抗放大倍数(ψ)、颗粒 - 磁场相互作用参数(ΔχV(m))和细胞直径(D(c))。计算并给出了这些参数的范围,以及这些参数如何影响磁泳迁移率的最小和最大范围。对这些参数的详细了解有助于预测细胞磁泳迁移率,并通过选择抗体和磁性颗粒偶联物来控制细胞迁移率。