Suppr超能文献

通过实时荧光标记在体内监测蛋白质稳定性和聚集情况。

Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling.

作者信息

Ignatova Zoya, Gierasch Lila M

机构信息

Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA.

出版信息

Proc Natl Acad Sci U S A. 2004 Jan 13;101(2):523-8. doi: 10.1073/pnas.0304533101. Epub 2003 Dec 30.

Abstract

In vivo fluorescent labeling of an expressed protein has enabled the observation of its stability and aggregation directly in bacterial cells. Mammalian cellular retinoic acid-binding protein I (CRABP I) was mutated to incorporate in a surface-exposed omega loop the sequence Cys-Cys-Gly-Pro-Cys-Cys, which binds specifically to a biarsenical fluorescein dye (FlAsH). Unfolding of labeled tetra-Cys CRABP I is accompanied by enhancement of FlAsH fluorescence, which made it possible to determine the free energy of unfolding of this protein by urea titration in cells and to follow in real time the formation of inclusion bodies by a slow-folding, aggregationprone mutant (FlAsH-labeled P39A tetra-Cys CRABP I). Aggregation in vivo displayed a concentration-dependent apparent lag time similar to observations of protein aggregation in purified in vitro model systems.

摘要

对表达蛋白进行体内荧光标记,使得能够直接在细菌细胞中观察其稳定性和聚集情况。将哺乳动物细胞视黄酸结合蛋白I(CRABP I)进行突变,使其在表面暴露的ω环中掺入序列Cys-Cys-Gly-Pro-Cys-Cys,该序列可特异性结合双砷荧光素染料(FlAsH)。标记的四半胱氨酸CRABP I的解折叠伴随着FlAsH荧光增强,这使得通过细胞内尿素滴定来确定该蛋白的解折叠自由能,并实时跟踪由一个易于缓慢折叠和聚集的突变体(FlAsH标记的P39A四半胱氨酸CRABP I)形成包涵体成为可能。体内聚集表现出浓度依赖性的明显延迟时间,这与在纯化的体外模型系统中观察到的蛋白质聚集情况相似。

相似文献

5
ReAsH as a Quantitative Probe of In-Cell Protein Dynamics.ReAsH作为细胞内蛋白质动力学的定量探针。
Biochemistry. 2016 Apr 5;55(13):1968-76. doi: 10.1021/acs.biochem.5b01336. Epub 2016 Mar 18.

引用本文的文献

2
The role of biomolecular condensates in protein aggregation.生物分子凝聚物在蛋白质聚集中的作用。
Nat Rev Chem. 2024 Sep;8(9):686-700. doi: 10.1038/s41570-024-00635-w. Epub 2024 Aug 12.
5
Protein stability [determination] problems.蛋白质稳定性[测定]问题。
Front Mol Biosci. 2022 Aug 5;9:880358. doi: 10.3389/fmolb.2022.880358. eCollection 2022.
6
Protein Fibrillation under Crowded Conditions.拥挤环境下的蛋白质纤维形成。
Biomolecules. 2022 Jul 6;12(7):950. doi: 10.3390/biom12070950.
7
Fundamental insights in early-stage inclusion body formation.早期包涵体形成的基本认识。
Microb Biotechnol. 2023 May;16(5):893-900. doi: 10.1111/1751-7915.14117. Epub 2022 Jul 13.
8
Visualizing the Multistep Process of Protein Aggregation in Live Cells.可视化活细胞中蛋白质聚集的多步骤过程。
Acc Chem Res. 2022 Feb 1;55(3):381-390. doi: 10.1021/acs.accounts.1c00648. Epub 2022 Jan 18.

本文引用的文献

5
Role of molecular chaperones in inclusion body formation.分子伴侣在包涵体形成中的作用。
FEBS Lett. 2003 Feb 27;537(1-3):215-21. doi: 10.1016/s0014-5793(03)00126-1.
7
Generating and exploiting polarity in bacteria.在细菌中产生和利用极性。
Science. 2002 Dec 6;298(5600):1942-6. doi: 10.1126/science.1072163.
8
Creating new fluorescent probes for cell biology.为细胞生物学创建新型荧光探针。
Nat Rev Mol Cell Biol. 2002 Dec;3(12):906-18. doi: 10.1038/nrm976.
10
Trigger factor retards protein export in Escherichia coli.触发因子会延缓大肠杆菌中的蛋白质输出。
J Biol Chem. 2002 Nov 8;277(45):43527-35. doi: 10.1074/jbc.M205950200. Epub 2002 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验