Suppr超能文献

SNOMED-CT对肿瘤学药物适应症概念和成分语义的覆盖范围。

Coverage of oncology drug indication concepts and compositional semantics by SNOMED-CT.

作者信息

Brown Steven H, Bauer Brent A, Wahner-Roedler Dietland L, Elkin Peter L

机构信息

Department of Veterans Affairs, USA.

出版信息

AMIA Annu Symp Proc. 2003;2003:115-9.

Abstract

OBJECTIVE

To evaluate SNOMED-CT 's ability to represent simple and compositional concepts in FDA approved oncology drug indications.

METHODS

Oncology drug indications were decomposed into single and compositional concepts. SNOMED-CT's coverage of single concepts and the semantics needed to create compositional concepts were evaluated using automated and manual techniques.

RESULTS

SNOMED-CT covered 86.3% of single concepts present in oncology drug indications; 11.3% of indications were covered completely. Coverage was best for concepts describing diseases, anatomy, and patient characteristics. Medications accounted for 50.5% of missing concepts. Excluding drug names, 45.2% of indications were completely represented. SNOMED-CT's semantics completely represented 60.1% of compositional expressions.

CONCLUSIONS

SNOMED-CT's overall coverage of the concepts in oncology drug indications was good. Improvements or alternatives are needed for medications and semantics.

摘要

目的

评估系统化医学命名法临床术语(SNOMED-CT)在FDA批准的肿瘤学药物适应症中表示简单概念和组合概念的能力。

方法

将肿瘤学药物适应症分解为单一概念和组合概念。使用自动化和人工技术评估SNOMED-CT对单一概念的覆盖范围以及创建组合概念所需的语义。

结果

SNOMED-CT覆盖了肿瘤学药物适应症中86.3%的单一概念;11.3%的适应症被完全覆盖。对于描述疾病、解剖结构和患者特征的概念,覆盖情况最佳。药物占缺失概念的50.5%。排除药物名称后,45.2%的适应症得到了完整表示。SNOMED-CT的语义完整表示了60.1%的组合表达式。

结论

SNOMED-CT对肿瘤学药物适应症中概念的总体覆盖情况良好。药物和语义方面需要改进或替代方案。

相似文献

5
Using SNOMED CT to represent two interface terminologies.使用SNOMED CT来表示两种接口术语。
J Am Med Inform Assoc. 2009 Jan-Feb;16(1):81-8. doi: 10.1197/jamia.M2694. Epub 2008 Oct 24.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验