Vance Rylie J, Miller Derick C, Thapa Anil, Haberstroh Karen M, Webster Thomas J
Department of Biomedical Engineering, Purdue University, 1296 Potter Building, West Lafayette, IN 47907-1296, USA.
Biomaterials. 2004 May;25(11):2095-103. doi: 10.1016/j.biomaterials.2003.08.064.
Select prolonged functions of fibroblasts leading to extensive fibrous tissue encapsulation can be detrimental to numerous implant applications, including materials designed for the bladder, vasculature, and bone. Specifically, overextended functions of fibroblasts at the tissue-implant interface for orthopedic applications lead to callus formation, fibrous encapsulation events, and ultimately soft (not desirable hard-bony) tissue juxtaposition. Such events result in insufficient regeneration of bone and compromise the overall success of the implant. The objective of the present in vitro study was to determine, for the first time, fibroblast densities on NaOH-treated poly-lactic-co-glycolic acid co-polymers (PLGA), HNO(3)-treated polyurethane (PU), and NaOH-treated polycaprolactone (PCL). Previous studies have demonstrated increased bladder, vascular, and bone cell densities on chemically treated compared to unaltered PLGA, PU, and PCL films. Results of this study provided evidence of decreased fibroblast numbers on chemically treated PLGA, PU, and PCL after time periods of up to 5 days. Examination of these substrates revealed that all chemically modified polymers possessed a high degree of nanometer surface roughness compared to their respective unaltered polymers. In contrast, other material properties (such as chemistry and wettability) were different when comparing chemically treated PLGA, PU, and PCL films. Since fibroblasts are anchorage-dependent cells whose adhesion is a critical prerequisite to the prolonged, extensive formation of a fibrous-tissue containing extracellular matrix, the present in vitro results of decreased fibroblast densities on chemically degraded PLGA, PU, and PCL suggest that these materials may be suitable materials for numerous tissue-engineering applications and, thus, deserve further investigation.
成纤维细胞的某些长期功能会导致广泛的纤维组织包封,这可能对许多植入应用产生不利影响,包括用于膀胱、血管和骨骼的材料。具体而言,在骨科应用中,组织-植入物界面处成纤维细胞功能过度会导致骨痂形成、纤维包封事件,最终导致软组织(而非理想的硬骨组织)并置。这些情况会导致骨再生不足,并影响植入物的整体成功率。本体外研究的目的是首次测定在氢氧化钠处理的聚乳酸-乙醇酸共聚物(PLGA)、硝酸处理的聚氨酯(PU)和氢氧化钠处理的聚己内酯(PCL)上的成纤维细胞密度。先前的研究表明,与未改变的PLGA、PU和PCL薄膜相比,经化学处理的薄膜上膀胱、血管和骨细胞的密度有所增加。本研究结果表明,在长达5天的时间段后,经化学处理的PLGA、PU和PCL上的成纤维细胞数量减少。对这些基质的检查显示,与各自未改变的聚合物相比,所有化学改性聚合物都具有高度的纳米表面粗糙度。相比之下,在比较经化学处理的PLGA、PU和PCL薄膜时,其他材料特性(如化学性质和润湿性)有所不同。由于成纤维细胞是锚定依赖性细胞,其粘附是形成含纤维组织的细胞外基质长期、广泛形成的关键前提,因此本体外研究中经化学降解的PLGA、PU和PCL上成纤维细胞密度降低的结果表明,这些材料可能是许多组织工程应用的合适材料,因此值得进一步研究。
Biomaterials. 2003-8
IEEE Trans Nanobioscience. 2002-6
Biomaterials. 2005-6
J Biomed Mater Res A. 2003-12-15
Croat Med J. 2015-6
Int J Nanomedicine. 2014-6-25
Ann Otol Rhinol Laryngol. 2014-12
World J Stem Cells. 2009-12-31