Padayatti Pius S, Helfand Marion S, Totir Monica A, Carey Marianne P, Hujer Andrea M, Carey Paul R, Bonomo Robert A, van den Akker Focco
Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106-4935, USA.
Biochemistry. 2004 Feb 3;43(4):843-8. doi: 10.1021/bi035985m.
Many pathogenic bacteria develop antibiotic resistance by utilizing beta-lactamases to degrade penicillin-like antibiotics. A commonly prescribed mechanism-based inhibitor of beta-lactamases is tazobactam, which can function either irreversibly or in a transient manner. We have demonstrated previously that the reaction between tazobactam and a deacylation deficient variant of SHV-1 beta-lactamase, E166A, could be followed in single crystals using Raman microscopy [Helfand, M. S., et al. (2003) Biochemistry 42, 13386-13392]. The Raman data show that maximal populations of an enamine-like intermediate occur 20-30 min after "soaking in" has commenced. By flash-freezing crystals in this time frame, we were able to trap the enamine species. The resulting 1.63 A resolution crystal structure revealed tazobactam covalently bound in the trans-enamine intermediate state with close to 100% occupancy in the active site. The Raman data also indicated that tazobactam forms a larger population of enamine than sulbactam or clavulanic acid does and that tazobactam's intermediate is also the most long-lived. The crystal structure provides a rationale for this finding since only tazobactam is able to form favorable intra- and intermolecular interactions in the active site that stabilize this trans-enamine intermediate. These interactions involve both the sulfone and triazolyl groups that distinguish tazobactam from clavulanic acid and sulbactam, respectively. The observed stabilization of the transient intermediate of tazobactam is thought to contribute to tazobactam's superior in vitro and in vivo clinical efficacy. Understanding the structural details of differing inhibitor effectiveness can aid the design of improved mechanism-based beta-lactamase inhibitors.
许多致病细菌通过利用β-内酰胺酶降解青霉素类抗生素来产生抗生素耐药性。一种常用的基于机制的β-内酰胺酶抑制剂是他唑巴坦,它可以不可逆地或短暂地发挥作用。我们之前已经证明,使用拉曼显微镜可以在单晶中追踪他唑巴坦与SHV-1β-内酰胺酶的脱酰化缺陷变体E166A之间的反应[Helfand, M. S.,等人(2003年)《生物化学》42, 13386 - 13392]。拉曼数据表明,在“浸泡”开始后20 - 30分钟出现了最大数量的烯胺样中间体。通过在此时间范围内快速冷冻晶体,我们能够捕获烯胺物种。所得分辨率为1.63 Å的晶体结构显示,他唑巴坦以反式烯胺中间体状态共价结合在活性位点,占有率接近100%。拉曼数据还表明,他唑巴坦形成的烯胺数量比舒巴坦或克拉维酸更多,并且他唑巴坦的中间体也是寿命最长的。晶体结构为这一发现提供了理论依据,因为只有他唑巴坦能够在活性位点形成稳定这种反式烯胺中间体的有利分子内和分子间相互作用。这些相互作用分别涉及使他唑巴坦与克拉维酸和舒巴坦区分开来的砜基和三唑基。他唑巴坦瞬态中间体的这种稳定作用被认为有助于其在体外和体内的卓越临床疗效。了解不同抑制剂有效性的结构细节有助于设计改进的基于机制的β-内酰胺酶抑制剂。