Helfand Marion S, Totir Monica A, Carey Marianne P, Hujer Andrea M, Bonomo Robert A, Carey Paul R
Research Division, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, USA.
Biochemistry. 2003 Nov 25;42(46):13386-92. doi: 10.1021/bi035716w.
The reactions between three clinically relevant inhibitors, tazobactam, sulbactam, and clavulanic acid, and SHV beta-lactamase (EC 3.5.2.6) have been followed in single crystals using a Raman microscope. The data are far superior to those obtained for the enzyme in aqueous solution and allow us to identify species on the reaction pathway and to measure the rates of the accumulation and decay of these species. A key intermediate on the reaction pathway is an acyl enzyme formed between Ser70 and the lactam ring's C=O group. By using the E166A deacylation deficient variant of the enzyme, we were able to focus on the process of acyl enzyme formation. The Raman data show that all three inhibitors form an enamine-type acyl enzyme reaching maximal populations at 10, 22, and 29 min for sulbactam, clavulanic acid, and tazobactam, respectively. The enamine intermediate exhibits a characteristic and relatively intense band near 1595 cm(-1) due to a stretching motion of the O=C-C=C-NH moiety that shifts to lower frequency upon NH <--> ND exchange. This feature was used to follow the kinetics of enamine buildup and decay in the crystal. Quantum mechanical calculations support the assignment of the 1595 cm(-1) band, as well as several other bands, to a trans-enamine species. The Raman data also demonstrate that the lactam ring opens prior to enamine formation since the lactam ring carbonyl (C=O) peak disappears prior to the appearance of the enamine 1595 cm(-1) band. Tazobactam appears to form approximately twice as much enamine intermediate as sulbactam and clavulanic acid, which correlates with its superior performance in the clinic, a finding that may bear on future drug design.
利用拉曼显微镜对三种临床相关抑制剂(他唑巴坦、舒巴坦和克拉维酸)与SHVβ-内酰胺酶(EC 3.5.2.6)之间的反应进行了单晶跟踪研究。这些数据远优于在水溶液中对该酶所获得的数据,使我们能够识别反应途径中的物种,并测量这些物种的积累和衰减速率。反应途径中的一个关键中间体是在Ser70与内酰胺环的C=O基团之间形成的酰基酶。通过使用该酶的E166A脱酰基缺陷变体,我们能够专注于酰基酶的形成过程。拉曼数据表明,所有三种抑制剂都形成了烯胺型酰基酶,舒巴坦、克拉维酸和他唑巴坦分别在10分钟、22分钟和29分钟时达到最大数量。由于O=C-C=C-NH部分的拉伸运动,烯胺中间体在1595 cm(-1)附近呈现出一个特征性且相对较强的谱带,该谱带在NH <--> ND交换时会向低频移动。这一特征被用于跟踪晶体中烯胺的生成和衰减动力学。量子力学计算支持将1595 cm(-1)谱带以及其他几个谱带归属于反式烯胺物种。拉曼数据还表明,由于在烯胺1595 cm(-1)谱带出现之前内酰胺环羰基(C=O)峰就消失了,所以内酰胺环在烯胺形成之前就已打开。他唑巴坦形成的烯胺中间体似乎是舒巴坦和克拉维酸的两倍左右,这与其在临床上的卓越表现相关,这一发现可能对未来的药物设计有影响。