Basset Gilles J C, Quinlivan Eoin P, Ravanel Stéphane, Rébeillé Fabrice, Nichols Brian P, Shinozaki Kazuo, Seki Motoaki, Adams-Phillips Lori C, Giovannoni James J, Gregory Jesse F, Hanson Andrew D
Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA.
Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1496-501. doi: 10.1073/pnas.0308331100. Epub 2004 Jan 26.
It is not known how plants synthesize the p-aminobenzoate (PABA) moiety of folates. In Escherichia coli, PABA is made from chorismate in two steps. First, the PabA and PabB proteins interact to catalyze transfer of the amide nitrogen of glutamine to chorismate, forming 4-amino-4-deoxychorismate (ADC). The PabC protein then mediates elimination of pyruvate and aromatization to give PABA. Fungi, actinomycetes, and Plasmodium spp. also synthesize PABA but have proteins comprising fused domains homologous to PabA and PabB. These bipartite proteins are commonly called "PABA synthases," although it is unclear whether they produce PABA or ADC. Genomic approaches identified Arabidopsis and tomato cDNAs encoding bipartite proteins containing fused PabA and PabB domains, plus a putative chloroplast targeting peptide. These cDNAs encode functional enzymes, as demonstrated by complementation of an E. coli pabA pabB double mutant and a yeast PABA-synthase deletant. The partially purified recombinant Arabidopsis protein did not produce PABA unless the E. coli PabC enzyme was added, indicating that it forms ADC, not PABA. The enzyme behaved as a monomer in size-exclusion chromatography and was not inhibited by physiological concentrations of PABA, its glucose ester, or folates. When the putative targeting peptide was fused to GFP and expressed in protoplasts, the fusion protein appeared only in chloroplasts, indicating that PABA synthesis is plastidial. In the pericarp of tomato fruit, the PabA-PabB mRNA level fell drastically as ripening advanced, but there was no fall in total PABA content, which stayed between 0.7 and 2.3 nmol.g(-1) fresh weight.
目前尚不清楚植物是如何合成叶酸的对氨基苯甲酸(PABA)部分的。在大肠杆菌中,PABA由分支酸分两步合成。首先,PabA和PabB蛋白相互作用,催化将谷氨酰胺的酰胺氮转移到分支酸上,形成4-氨基-4-脱氧分支酸(ADC)。然后PabC蛋白介导丙酮酸的消除和芳构化,生成PABA。真菌、放线菌和疟原虫属也能合成PABA,但具有与PabA和PabB同源的融合结构域的蛋白质。这些双结构域蛋白通常被称为“PABA合酶”,尽管尚不清楚它们产生的是PABA还是ADC。基因组学方法鉴定出拟南芥和番茄的cDNA,其编码包含融合的PabA和PabB结构域以及一个假定的叶绿体靶向肽的双结构域蛋白。这些cDNA编码功能酶,这通过对大肠杆菌pabA pabB双突变体和酵母PABA合酶缺失体的互补得以证明。部分纯化的重组拟南芥蛋白在不添加大肠杆菌PabC酶的情况下不会产生PABA,这表明它形成的是ADC而非PABA。该酶在尺寸排阻色谱中表现为单体,并且不受生理浓度的PABA、其葡萄糖酯或叶酸的抑制。当假定的靶向肽与绿色荧光蛋白(GFP)融合并在原生质体中表达时,融合蛋白仅出现在叶绿体中,这表明PABA合成发生在质体中。在番茄果实的果皮中,随着成熟进程的推进,PabA - PabB mRNA水平急剧下降,但总PABA含量并未下降,其保持在0.7至2.3 nmol·g(-1)鲜重之间。