Balmer Yves, Vensel William H, Tanaka Charlene K, Hurkman William J, Gelhaye Eric, Rouhier Nicolas, Jacquot Jean-Pierre, Manieri Wanda, Schürmann Peter, Droux Michel, Buchanan Bob B
Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720, USA.
Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2642-7. doi: 10.1073/pnas.0308583101.
Mitochondria contain thioredoxin (Trx), a regulatory disulfide protein, and an associated flavoenzyme, NADP/Trx reductase, which provide a link to NADPH in the organelle. Unlike animal and yeast counterparts, the function of Trx in plant mitochondria is largely unknown. Accordingly, we have applied recently devised proteomic approaches to identify soluble Trx-linked proteins in mitochondria isolated from photosynthetic (pea and spinach leaves) and heterotrophic (potato tubers) sources. Application of the mitochondrial extracts to mutant Trx affinity columns in conjunction with proteomics led to the identification of 50 potential Trx-linked proteins functional in 12 processes: photorespiration, citric acid cycle and associated reactions, lipid metabolism, electron transport, ATP synthesis/transformation, membrane transport, translation, protein assembly/folding, nitrogen metabolism, sulfur metabolism, hormone synthesis, and stress-related reactions. Almost all of these targets were also identified by a fluorescent gel electrophoresis procedure in which reduction by Trx can be observed directly. In some cases, the processes targeted by Trx depended on the source of the mitochondria. The results support the view that Trx acts as a sensor and enables mitochondria to adjust key reactions in accord with prevailing redox state. These and earlier findings further suggest that, by sensing redox in chloroplasts and mitochondria, Trx enables the two organelles of photosynthetic tissues to communicate by means of a network of transportable metabolites such as dihydroxyacetone phosphate, malate, and glycolate. In this way, light absorbed and processed by means of chlorophyll can be perceived and function in regulating fundamental mitochondrial processes akin to its mode of action in chloroplasts.
线粒体含有硫氧还蛋白(Trx),一种调节性二硫键蛋白,以及一种相关的黄素酶——NADP/Trx还原酶,它们在细胞器中与NADPH建立了联系。与动物和酵母中的对应物不同,Trx在植物线粒体中的功能很大程度上尚不清楚。因此,我们应用了最近设计的蛋白质组学方法,来鉴定从光合(豌豆和菠菜叶)和异养(马铃薯块茎)来源分离的线粒体中可溶性Trx连接蛋白。将线粒体提取物应用于突变型Trx亲和柱并结合蛋白质组学,从而鉴定出50种潜在的Trx连接蛋白,它们在12个过程中发挥作用:光呼吸、柠檬酸循环及相关反应、脂质代谢、电子传递、ATP合成/转化、膜运输、翻译、蛋白质组装/折叠、氮代谢、硫代谢、激素合成以及应激相关反应。几乎所有这些靶点也通过荧光凝胶电泳程序得以鉴定,在该程序中可以直接观察到Trx的还原作用。在某些情况下,Trx靶向的过程取决于线粒体的来源。这些结果支持了这样一种观点,即Trx作为一种传感器,使线粒体能够根据当前的氧化还原状态调整关键反应。这些以及早期的研究结果进一步表明,通过感知叶绿体和线粒体中的氧化还原状态,Trx使光合组织的这两个细胞器能够通过诸如磷酸二羟丙酮、苹果酸和乙醇酸等可运输代谢物网络进行通信。通过这种方式,通过叶绿素吸收和处理的光能够被感知,并在调节基本的线粒体过程中发挥作用,类似于其在叶绿体中的作用方式。