Palacino James J, Sagi Dijana, Goldberg Matthew S, Krauss Stefan, Motz Claudia, Wacker Maik, Klose Joachim, Shen Jie
Center for Neurologic Diseases, Brigham and Women's Hospital, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA.
J Biol Chem. 2004 Apr 30;279(18):18614-22. doi: 10.1074/jbc.M401135200. Epub 2004 Feb 24.
Loss-of-function mutations in parkin are the predominant cause of familial Parkinson's disease. We previously reported that parkin-/- mice exhibit nigrostriatal deficits in the absence of nigral degeneration. Parkin has been shown to function as an E3 ubiquitin ligase. Loss of parkin function, therefore, has been hypothesized to cause nigral degeneration via an aberrant accumulation of its substrates. Here we employed a proteomic approach to determine whether loss of parkin function results in alterations in abundance and/or modification of proteins in the ventral midbrain of parkin-/- mice. Two-dimensional gel electrophoresis followed by mass spectrometry revealed decreased abundance of a number of proteins involved in mitochondrial function or oxidative stress. Consistent with reductions in several subunits of complexes I and IV, functional assays showed reductions in respiratory capacity of striatal mitochondria isolated from parkin-/- mice. Electron microscopic analysis revealed no gross morphological abnormalities in striatal mitochondria of parkin-/- mice. In addition, parkin-/- mice showed a delayed rate of weight gain, suggesting broader metabolic abnormalities. Accompanying these deficits in mitochondrial function, parkin-/- mice also exhibited decreased levels of proteins involved in protection from oxidative stress. Consistent with these findings, parkin-/- mice showed decreased serum antioxidant capacity and increased protein and lipid peroxidation. The combination of proteomic, genetic, and physiological analyses reveal an essential role for parkin in the regulation of mitochondrial function and provide the first direct evidence of mitochondrial dysfunction and oxidative damage in the absence of nigral degeneration in a genetic mouse model of Parkinson's disease.
帕金森病基因的功能丧失性突变是家族性帕金森病的主要病因。我们之前报道过,在无黑质变性的情况下,parkin基因敲除小鼠表现出黑质纹状体缺陷。已有研究表明parkin作为一种E3泛素连接酶发挥作用。因此,有人推测parkin功能丧失会通过其底物的异常积累导致黑质变性。在此,我们采用蛋白质组学方法来确定parkin功能丧失是否会导致parkin基因敲除小鼠腹侧中脑蛋白质丰度和/或修饰的改变。二维凝胶电泳结合质谱分析显示,一些参与线粒体功能或氧化应激的蛋白质丰度降低。与复合物I和IV的几个亚基减少一致,功能分析表明从parkin基因敲除小鼠分离的纹状体线粒体呼吸能力降低。电子显微镜分析显示parkin基因敲除小鼠纹状体线粒体无明显形态异常。此外,parkin基因敲除小鼠体重增加速率延迟,提示存在更广泛的代谢异常。伴随着这些线粒体功能缺陷,parkin基因敲除小鼠中参与抗氧化应激保护的蛋白质水平也降低。与这些发现一致,parkin基因敲除小鼠血清抗氧化能力降低,蛋白质和脂质过氧化增加。蛋白质组学、遗传学和生理学分析的结合揭示了parkin在调节线粒体功能中的重要作用,并为帕金森病基因小鼠模型在无黑质变性情况下的线粒体功能障碍和氧化损伤提供了首个直接证据。