Suppr超能文献

通过平行因子分析对单细胞荧光进行盲光谱分解。

Blind spectral decomposition of single-cell fluorescence by parallel factor analysis.

作者信息

Shirakawa Hideki, Miyazaki Shunichi

机构信息

Department of Physiology, Tokyo Women's Medical University School of Medicine, Shinjuku, Tokyo, 162-8666, Japan.

出版信息

Biophys J. 2004 Mar;86(3):1739-52. doi: 10.1016/S0006-3495(04)74242-3.

Abstract

Simultaneous measurement of multiple signaling molecules is essential to investigate their relations and interactions in living cells. Although a wide variety of fluorescent probes are currently available, the number of probes that can be applied simultaneously is often limited by the overlaps among their fluorescence spectra. We developed the experimental system to measure and analyze many overlapping fluorescent components in single cells. It is based on the recording of two-dimensional single-cell fluorescence spectra and on the blind spectral decomposition of fluorescence data by method of parallel factor analysis. Because this method does not require any preknowledge about the shapes of individual component spectra, it can be applied to the specimens that contain fluorescent components with unknown spectra. By examining the performance using the mixture solutions of fluorescent indicators, it was confirmed that >10 largely overlapping spectral components could be easily separated. The effectiveness in the physiological experiments was proven in the applications to the temporal analysis of intracellular Ca(2+) concentration and pH, as well as the intrinsic fluorescent components, in single mouse oocytes.

摘要

同时测量多种信号分子对于研究它们在活细胞中的关系和相互作用至关重要。尽管目前有各种各样的荧光探针,但能够同时应用的探针数量常常受到其荧光光谱重叠的限制。我们开发了用于测量和分析单细胞中许多重叠荧光成分的实验系统。它基于二维单细胞荧光光谱的记录以及通过平行因子分析方法对荧光数据进行盲光谱分解。由于该方法不需要关于各个成分光谱形状的任何先验知识,所以它可以应用于含有光谱未知的荧光成分的标本。通过使用荧光指示剂混合溶液检验其性能,证实可以轻松分离出10种以上大量重叠的光谱成分。在对单个小鼠卵母细胞内Ca(2+)浓度和pH的时间分析以及固有荧光成分的应用中,证明了该方法在生理实验中的有效性。

相似文献

1
Blind spectral decomposition of single-cell fluorescence by parallel factor analysis.
Biophys J. 2004 Mar;86(3):1739-52. doi: 10.1016/S0006-3495(04)74242-3.
2
Identification of single fluorescent labels using spectroscopic microscopy.
Appl Spectrosc. 2010 Jan;64(1):37-45. doi: 10.1366/000370210790572034.
3
Tracking of mercury ions in living cells with a fluorescent chemodosimeter under single- or two-photon excitation.
Anal Chim Acta. 2007 Aug 6;597(2):306-12. doi: 10.1016/j.aca.2007.06.057. Epub 2007 Jul 7.
5
Unsupervised decomposition of low-intensity low-dimensional multi-spectral fluorescent images for tumour demarcation.
Med Image Anal. 2009 Jun;13(3):507-18. doi: 10.1016/j.media.2009.02.002. Epub 2009 Feb 20.
8
The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes.
Theriogenology. 2005 Mar 1;63(4):1181-94. doi: 10.1016/j.theriogenology.2004.06.006.

引用本文的文献

2
Quantitative optical nanophysiology of Ca signaling at inner hair cell active zones.
Nat Commun. 2018 Jan 18;9(1):290. doi: 10.1038/s41467-017-02612-y.
3
Multicolor whole-cell bacterial sensing using a synchronous fluorescence spectroscopy-based approach.
PLoS One. 2015 Mar 30;10(3):e0122848. doi: 10.1371/journal.pone.0122848. eCollection 2015.
4
Efficient blind spectral unmixing of fluorescently labeled samples using multi-layer non-negative matrix factorization.
PLoS One. 2013 Nov 8;8(11):e78504. doi: 10.1371/journal.pone.0078504. eCollection 2013.
5
N-way FRET microscopy of multiple protein-protein interactions in live cells.
PLoS One. 2013 Jun 6;8(6):e64760. doi: 10.1371/journal.pone.0064760. Print 2013.
6
A New Approach for Measuring Single-Cell Oxygen Consumption Rates.
IEEE Trans Autom Sci Eng. 2008 Jan 1;5(1):32-42. doi: 10.1109/tase.2007.909441.
7
Line-scanning microscopy for time-gated and spectrally resolved fluorescence imaging.
J Biol Phys. 2008 Apr;34(1-2):51-62. doi: 10.1007/s10867-008-9113-0. Epub 2008 Sep 3.
8
Blind source separation techniques for the decomposition of multiply labeled fluorescence images.
Biophys J. 2009 May 6;96(9):3791-800. doi: 10.1016/j.bpj.2008.10.068.
9
Chemical calcium indicators.
Methods. 2008 Nov;46(3):143-51. doi: 10.1016/j.ymeth.2008.09.025. Epub 2008 Oct 16.
10
Detecting fluorescent protein expression and co-localisation on single secretory vesicles with linear spectral unmixing.
Eur Biophys J. 2006 Aug;35(6):533-47. doi: 10.1007/s00249-005-0040-8. Epub 2006 Mar 28.

本文引用的文献

2
Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair.
FEBS Lett. 2002 Nov 6;531(2):245-9. doi: 10.1016/s0014-5793(02)03508-1.
3
Fluorescent indicators for imaging protein phosphorylation in single living cells.
Nat Biotechnol. 2002 Mar;20(3):287-94. doi: 10.1038/nbt0302-287.
4
Multicolor imaging of Ca(2+) and protein kinase C signals using novel epifluorescence microscopy.
Biophys J. 2002 Feb;82(2):1076-85. doi: 10.1016/S0006-3495(02)75467-2.
6
8
Oscillations and hypoxic changes of mitochondrial variables in neurons of the brainstem respiratory centre of mice.
J Physiol. 2001 May 15;533(Pt 1):227-36. doi: 10.1111/j.1469-7793.2001.0227b.x.
9
Mitochondria and calcium: from cell signalling to cell death.
J Physiol. 2000 Nov 15;529 Pt 1(Pt 1):57-68. doi: 10.1111/j.1469-7793.2000.00057.x.
10
Multispectral imaging autofluorescence microscopy for the analysis of lymph-node tissues.
Photochem Photobiol. 2000 Jun;71(6):737-42. doi: 10.1562/0031-8655(2000)071<0737:miamft>2.0.co;2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验