Suppr超能文献

空间明确矩阵模型。阶段结构积分差分方程的数学分析。

Spatially-explicit matrix models. A mathematical analysis of stage-structured integrodifference equations.

作者信息

Lutscher Frithjof, Lewis Mark A

机构信息

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1 Canada.

出版信息

J Math Biol. 2004 Mar;48(3):293-324. doi: 10.1007/s00285-003-0234-6. Epub 2003 Aug 20.

Abstract

This paper is concerned with mathematical analysis of the 'critical domain-size' problem for structured populations. Space is introduced explicitly into matrix models for stage-structured populations. Movement of individuals is described by means of a dispersal kernel. The mathematical analysis investigates conditions for existence, stability and uniqueness of equilibrium solutions as well as some bifurcation behaviors. These mathematical results are linked to species persistence or extinction in connected habitats of different sizes or fragmented habitats; hence the framework is given for application of such models to ecology. Several approximations which reduce the complexity of integrodifference equations are given. A simple example is worked out to illustrate the analytical results and to compare the behavior of the integrodifference model to that of the approximations.

摘要

本文关注结构化种群“临界域大小”问题的数学分析。空间被明确引入到阶段结构种群的矩阵模型中。个体的移动通过扩散核来描述。数学分析研究了平衡解的存在性、稳定性和唯一性条件以及一些分岔行为。这些数学结果与不同大小的连通栖息地或破碎栖息地中物种的持续存在或灭绝相关;因此,给出了将此类模型应用于生态学的框架。给出了几种降低积分差分方程复杂性的近似方法。给出了一个简单的例子来说明分析结果,并将积分差分模型的行为与近似模型的行为进行比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验