Israeli Navot, Goldenfeld Nigel
Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801-3080, USA.
Phys Rev Lett. 2004 Feb 20;92(7):074105. doi: 10.1103/PhysRevLett.92.074105.
Using elementary cellular automata (CA) as an example, we show how to coarse grain CA in all classes of Wolfram's classification. We find that computationally irreducible physical processes can be predictable and even computationally reducible at a coarse-grained level of description. The resulting coarse-grained CA which we construct emulate the large-scale behavior of the original systems without accounting for small-scale details. At least one of the CA that can be coarse grained is irreducible and known to be a universal Turing machine.
以初等元胞自动机(CA)为例,我们展示了如何对沃尔夫勒姆分类中所有类别的CA进行粗粒化。我们发现,在计算上不可约的物理过程在粗粒度描述层面上可以是可预测的,甚至是计算可约的。我们构建的所得粗粒化CA在不考虑小尺度细节的情况下模拟了原始系统的大规模行为。至少有一个可以进行粗粒化的CA是不可约的,并且已知是通用图灵机。