Suppr超能文献

利用幽灵奇点预测金融市场崩溃。

Predicting financial market crashes using ghost singularities.

机构信息

Centre for Systems, Dynamics and Control, Department of Mathematics, Harrison Building, University of Exeter, Exeter EX4 4QF, United Kingdom.

ETH Zürich, Department of Management, Technology and Economics, Scheuchzerstrasse 7, CH-8092 Zürich, Switzerland.

出版信息

PLoS One. 2018 Mar 29;13(3):e0195265. doi: 10.1371/journal.pone.0195265. eCollection 2018.

Abstract

We analyse the behaviour of a non-linear model of coupled stock and bond prices exhibiting periodically collapsing bubbles. By using the formalism of dynamical system theory, we explain what drives the bubbles and how foreshocks or aftershocks are generated. A dynamical phase space representation of that system coupled with standard multiplicative noise rationalises the log-periodic power law singularity pattern documented in many historical financial bubbles. The notion of 'ghosts of finite-time singularities' is introduced and used to estimate the end of an evolving bubble, using finite-time singularities of an approximate normal form near the bifurcation point. We test the forecasting skill of this method on different stochastic price realisations and compare with Monte Carlo simulations of the full system. Remarkably, the approximate normal form is significantly more precise and less biased. Moreover, the method of ghosts of singularities is less sensitive to the noise realisation, thus providing more robust forecasts.

摘要

我们分析了一个表现出周期性崩溃泡沫的耦合股票和债券价格的非线性模型的行为。通过使用动力系统理论的形式,我们解释了是什么驱动了泡沫,以及如何产生前震或余震。该系统与标准乘法噪声的动态相空间表示合理化了许多历史金融泡沫中记录的对数周期幂律奇异模式。引入了“有限时间奇异点幽灵”的概念,并使用在分岔点附近的近似正规形式的有限时间奇异点来估计正在演变的泡沫的结束。我们在不同的随机价格实现上测试了该方法的预测能力,并与完整系统的蒙特卡罗模拟进行了比较。值得注意的是,近似正规形式显著更精确且偏差更小。此外,奇异点幽灵的方法对噪声实现的敏感性较低,因此提供了更稳健的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验