Suppr超能文献

差异基因表达程度:检测具有生物学意义的表达差异并估计其大小。

Degrees of differential gene expression: detecting biologically significant expression differences and estimating their magnitudes.

作者信息

Bickel David R

机构信息

Medical College of Georgia, Office of Biostatistics and Bioinformatics, Augusta, GA 30912-4900, USA.

出版信息

Bioinformatics. 2004 Mar 22;20(5):682-8. doi: 10.1093/bioinformatics/btg468. Epub 2004 Jan 22.

Abstract

MOTIVATION

Many methods of identifying differential expression in genes depend on testing the null hypotheses of exactly equal means or distributions of expression levels for each gene across groups, even though a statistically significant difference in the expression level does not imply the occurrence of any difference of biological or clinical significance. This is because a mathematical definition of 'differential expression' as any non-zero difference does not correspond to the differential expression biologists seek. Furthermore, while some current methods account for multiple comparisons in hypothesis tests, they do not accordingly adjust estimates of the degrees to which genes are differentially expressed. Both problems lead to overstating the relevance of findings.

RESULTS

Testing whether genes have relevant differential expression can be accomplished with customized null hypotheses, thereby redefining 'differential expression' in a way that is more biologically meaningful. When such tests control the false discovery rate, they effectively discover genes based on a desired quantile of differential gene expression. Estimation of the degree to which genes are differentially expressed has been corrected for multiple comparisons.

AVAILABILITY

R code is freely available from http://www.davidbickel.com and may become available from www.r-project.org or www.bioconductor.org

SUPPLEMENTARY INFORMATION

Applications to cancer microarrays, an application in the absence of differential expression, pseudocode, and a guide to customizing the methods may be found at www.davidbickel.com and www.mathpreprints.com

摘要

动机

许多识别基因差异表达的方法依赖于检验每个基因在不同组间表达水平均值或分布完全相等的零假设,尽管表达水平上具有统计学显著差异并不意味着存在任何生物学或临床意义上的差异。这是因为将“差异表达”数学定义为任何非零差异并不符合生物学家所寻求的差异表达。此外,虽然当前一些方法在假设检验中考虑了多重比较,但它们并未相应地调整基因差异表达程度的估计值。这两个问题都导致夸大了研究结果的相关性。

结果

通过定制零假设来检验基因是否具有相关差异表达是可行的,从而以一种更具生物学意义的方式重新定义“差异表达”。当此类检验控制错误发现率时,它们能够基于所需的差异基因表达分位数有效地发现基因。已针对多重比较对基因差异表达程度的估计进行了校正。

可用性

R代码可从http://www.davidbickel.com免费获取,也可能在www.r-project.org或www.bioconductor.org上获取。

补充信息

癌症微阵列应用、无差异表达情况下的应用、伪代码以及方法定制指南可在www.davidbickel.com和www.mathpreprints.com上找到。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验