Vandamme P, Vancanneyt M, Pot B, Mels L, Hoste B, Dewettinck D, Vlaes L, van den Borre C, Higgins R, Hommez J
Laboratorium voor Microbiologie, University of Ghent, Belgium.
Int J Syst Bacteriol. 1992 Jul;42(3):344-56. doi: 10.1099/00207713-42-3-344.
The relationships of 77 aerotolerant Arcobacter strains that were originally identified as Campylobacter cryaerophila (now Arcobacter cryaerophilus [P. Vandamme, E. Falsen, R. Rossau, B. Hoste, P. Segers, R. Tytgat, and J. De Ley, Int. J. Syst. Bacteriol. 41:88-103, 1991]) and 6 reference strains belonging to the taxa Arcobacter nitrofigilis, Arcobacter cryaerophilus, and "Campylobacter butzleri" were studied by using a polyphasic approach, in which we performed DNA-rRNA hybridizations, DNA-DNA hybridizations, a numerical analysis of whole-cell protein patterns after sodium dodecyl sulfate-polyacrylamide gel electrophoresis, an analysis of cellular fatty acid compositions, and a phenotypic analysis and determined DNA base ratios. Our results indicate that "C. butzleri" should be transferred to the genus Arcobacter as Arcobacter butzleri comb. nov., as was suggested by Kiehlbauch and coworkers (J. A. Kiehlbauch, D. J. Brenner, M. A. Nicholson, C. N. Baker, C. M. Patton, A. G. Steigerwalt, and I. K. Wachsmuth, J. Clin. Microbiol. 29:376-385, 1991). A rapid screening of all strains in which we used the sodium dodecyl sulfate-polyacrylamide gel electrophoresis technique revealed five major groups, which were identified by using DNA-DNA hybridization data as A. cryaerophilus (two distinct electrophoretic subgroups), A. butzleri, A. nitrofigilis, and a new species, for which we propose the name Arcobacter skirrowii. The phylogenetic position within rRNA superfamily VI was established for each species. A. butzleri strains and strains belonging to one of the electrophoretic subgroups of A. cryaerophilus had similar fatty acid contents. An analysis of fatty acid compositions allowed clear-cut differentiation of all of the other groups. All of the species could be distinguished by using classical phenotypic tests, although erroneous identifications due to a shortage of clear-cut differentiating tests could occur.
采用多相分类方法,对最初鉴定为嗜冷弯曲菌(现嗜冷嗜水气单胞菌[P. Vandamme, E. Falsen, R. Rossau, B. Hoste, P. Segers, R. Tytgat, and J. De Ley, Int. J. Syst. Bacteriol. 41:88 - 103, 1991])的77株耐氧嗜水气单胞菌菌株以及属于嗜水气单胞菌、嗜冷嗜水气单胞菌和“布氏弯曲菌”分类单元的6株参考菌株进行了研究。在此过程中,我们进行了DNA - rRNA杂交、DNA - DNA杂交、十二烷基硫酸钠 - 聚丙烯酰胺凝胶电泳后全细胞蛋白图谱的数值分析、细胞脂肪酸组成分析、表型分析并测定了DNA碱基比率。我们的结果表明,“布氏弯曲菌”应如Kiehlbauch及其同事所建议的(J. A. Kiehlbauch, D. J. Brenner, M. A. Nicholson, C. N. Baker, C. M. Patton, A. G. Steigerwalt, and I. K. Wachsmuth, J. Clin. Microbiol. 29:376 - 385, 1991),作为布氏嗜水气单胞菌新组合转移至嗜水气单胞菌属。我们使用十二烷基硫酸钠 - 聚丙烯酰胺凝胶电泳技术对所有菌株进行快速筛选,发现了五个主要组群,通过DNA - DNA杂交数据鉴定为嗜冷嗜水气单胞菌(两个不同的电泳亚组)、布氏嗜水气单胞菌、嗜水气单胞菌和一个新物种,我们为此新物种提议命名为斯氏嗜水气单胞菌。确定了每个物种在rRNA超家族VI中的系统发育位置。布氏嗜水气单胞菌菌株和属于嗜冷嗜水气单胞菌一个电泳亚组的菌株具有相似的脂肪酸含量。脂肪酸组成分析能够清晰地区分所有其他组群。所有物种均可通过经典表型试验加以区分,尽管由于缺乏明确的鉴别试验可能会出现错误鉴定。