Suppr超能文献

Freeze-fracture analysis of the effects of intermediates of the phosphatidylinositol cycle on fusion of rough endoplasmic reticulum membranes.

作者信息

Kan F W, Jolicoeur M, Paiement J

机构信息

Département d'anatomie, Faculté de médicine, Université de Montréal, Québec, Canada.

出版信息

Biochim Biophys Acta. 1992 Jun 30;1107(2):331-41. doi: 10.1016/0005-2736(92)90420-q.

Abstract

While searching for the identity of the effector of the putative GTP-binding protein involved in fusion of rough endoplasmic reticulum (RER) cell-free incubation conditions were found permitting fusion in a GTP-independent manner. Membrane fusion was obtained using medium required to study synthesis of phosphatidylinositol (PI). We now report on the effects of various co-factors and intermediates of the PI cycle on the interaction of rough microsomes. By freeze-fracture, fusion of rough microsomes was defined as the appearance of fracture-planes of membrane larger than those of unincubated membrane. Cytosine triphosphate (CTP, 3 mM) in the presence of 2 mM MnCl2 was most effective in stimulating fusion. Guanosine triphosphate (GTP) at the same concentration, could substitute for CTP to stimulate fusion, ATP, ITP, UTP and guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) could not. When combined together in the same medium CTP potentiated the effect of GTP. Arachidonic acid (20 micrograms/ml) also stimulated fusion in the presence of MnCl2. This led to the appearance of large fracture-planes of membrane with a heterogeneous distribution of intramembranous particles. Other saturated fatty acids at the same concentration did not stimulate fusion. Phosphatidylinositol (PI, 50 micrograms) and 2 mM MnCl2 had a similar effect as arachidonic acid and MnCl2 in stimulating fusion. The PI effect was largely augmented in the presence of CTP. Our results are consistent with the concept that metabolism of phospholipids may modulate GTP-dependent fusion of RER membranes.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验