Suppr超能文献

评估计算程序DEREK、TOPKAT和MCAS在预测药物分子遗传毒性方面的敏感性。

Assessment of the sensitivity of the computational programs DEREK, TOPKAT, and MCASE in the prediction of the genotoxicity of pharmaceutical molecules.

作者信息

Snyder Ronald D, Pearl Greg S, Mandakas George, Choy Wai Nang, Goodsaid Federico, Rosenblum I Y

机构信息

Department of Genetic and Molecular Toxicology, Schering-Plough Research Institute, Lafayette, New Jersey 07848, USA.

出版信息

Environ Mol Mutagen. 2004;43(3):143-58. doi: 10.1002/em.20013.

Abstract

Computational models are currently being used by regulatory agencies and within the pharmaceutical industry to predict the mutagenic potential of new chemical entities. These models rely heavily, although not exclusively, on bacterial mutagenicity data of nonpharmaceutical-type molecules as the primary knowledge base. To what extent, if any, this has limited the ability of these programs to predict genotoxicity of pharmaceuticals is not clear. In order to address this question, a panel of 394 marketed pharmaceuticals with Ames Salmonella reversion assay and other genetic toxicology findings was extracted from the 2000-2002 Physicians' Desk Reference and evaluated using MCASE, TOPKAT, and DEREK, the three most commonly used computational databases. These evaluations indicate a generally poor sensitivity of all systems for predicting Ames positivity (43.4-51.9% sensitivity) and even poorer sensitivity in prediction of other genotoxicities (e.g., in vitro cytogenetics positive; 21.3-31.9%). As might be expected, all three programs were more highly predictive for molecules containing carcinogenicity structural alerts (i.e., the so-called Ashby alerts; 61% +/- 14% sensitivity) than for those without such alerts (12% +/- 6% sensitivity). Taking all genotoxicity assay findings into consideration, there were 84 instances in which positive genotoxicity results could not be explained in terms of structural alerts, suggesting the possibility of alternative mechanisms of genotoxicity not relating to covalent drug-DNA interaction. These observations suggest that the current computational systems when applied in a traditional global sense do not provide sufficient predictivity of bacterial mutagenicity (and are even less accurate at predicting genotoxicity in tests other than the Salmonella reversion assay) to be of significant value in routine drug safety applications. This relative inability of all three programs to predict the genotoxicity of drugs not carrying obvious DNA-reactive moieties is discussed with respect to the nature of the drugs whose positive responses were not predicted and to expectations of improving the predictivity of these programs. Limitations are primarily a consequence of incomplete understanding of the fundamental genotoxic mechanisms of nonstructurally alerting drugs rather than inherent deficiencies in the computational programs. Irrespective of their predictive power, however, these programs are valuable repositories of structure-activity relationship mutagenicity data that can be useful in directing chemical synthesis in early drug discovery.

摘要

目前,监管机构和制药行业正在使用计算模型来预测新化学实体的致突变潜力。这些模型很大程度上(尽管并非完全)依赖非药物类分子的细菌诱变性数据作为主要知识库。这些程序预测药物遗传毒性的能力在多大程度上受到限制(如果有的话)尚不清楚。为了解决这个问题,从2000 - 2002年《医师案头参考》中提取了一组394种已上市药品,这些药品有艾姆斯沙门氏菌回复突变试验及其他遗传毒理学研究结果,并使用最常用的三个计算数据库MC ASE、TOPKAT和DEREK进行评估。这些评估表明,所有系统预测艾姆斯试验阳性的敏感性普遍较差(敏感性为43.4 - 51.9%),而预测其他遗传毒性的敏感性更差(例如,体外细胞遗传学阳性;21.3 - 31.9%)。正如预期的那样,与不含有致癌性结构警示(即所谓的阿什比警示)的分子相比,这三个程序对含有致癌性结构警示的分子预测性更高(敏感性为61%±14%)(敏感性为12%±6%)。综合考虑所有遗传毒性试验结果,有84例阳性遗传毒性结果无法用结构警示来解释,这表明存在与共价药物 - DNA相互作用无关的遗传毒性替代机制的可能性。这些观察结果表明,当前的计算系统在传统的全局意义上应用时,对细菌诱变性的预测能力不足(在预测除沙门氏菌回复突变试验之外的其他试验中的遗传毒性时甚至更不准确),在常规药物安全性应用中没有显著价值。针对未被预测出阳性反应的药物的性质以及提高这些程序预测性的期望,讨论了这三个程序相对无法预测不携带明显DNA反应性部分的药物的遗传毒性的问题。局限性主要是由于对无结构警示药物的基本遗传毒性机制理解不完整,而不是计算程序本身存在固有缺陷。然而,无论其预测能力如何,这些程序都是结构 - 活性关系诱变性数据的宝贵储存库,可用于指导早期药物发现中的化学合成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验