Suppr超能文献

基于变分贝叶斯卡尔曼滤波的自适应脑机接口:实证评估

Adaptive BCI based on variational Bayesian Kalman filtering: an empirical evaluation.

作者信息

Sykacek Peter, Roberts Stephen J, Stokes Maria

机构信息

Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ Oxford, UK.

出版信息

IEEE Trans Biomed Eng. 2004 May;51(5):719-27. doi: 10.1109/TBME.2004.824128.

Abstract

This paper proposes the use of variational Kalman filtering as an inference technique for adaptive classification in a brain computer interface (BCI). The proposed algorithm translates electroencephalogram segments adaptively into probabilities of cognitive states. It, thus, allows for nonstationarities in the joint process over cognitive state and generated EEG which may occur during a consecutive number of trials. Nonstationarities may have technical reasons (e.g., changes in impedance between scalp and electrodes) or be caused by learning effects in subjects. We compare the performance of the proposed method against an equivalent static classifier by estimating the generalization accuracy and the bit rate of the BCI. Using data from two studies with healthy subjects, we conclude that adaptive classification significantly improves BCI performance. Averaging over all subjects that participated in the respective study, we obtain, depending on the cognitive task pairing, an increase both in generalization accuracy and bit rate of up to 8%. We may, thus, conclude that adaptive inference can play a significant contribution in the quest of increasing bit rates and robustness of current BCI technology. This is especially true since the proposed algorithm can be applied in real time.

摘要

本文提出将变分卡尔曼滤波作为一种推理技术,用于脑机接口(BCI)中的自适应分类。所提出的算法将脑电图片段自适应地转换为认知状态的概率。因此,它能够处理在连续多次试验中认知状态与所产生的脑电图联合过程中可能出现的非平稳性。非平稳性可能有技术原因(例如头皮与电极之间阻抗的变化),也可能是由受试者的学习效应引起的。我们通过估计BCI的泛化准确率和比特率,将所提出方法的性能与等效的静态分类器进行比较。使用来自两项针对健康受试者的研究数据,我们得出结论,自适应分类显著提高了BCI的性能。对参与各自研究的所有受试者进行平均,根据认知任务配对的不同,我们得到泛化准确率和比特率最多可提高8%。因此,我们可以得出结论,自适应推理对于提高当前BCI技术的比特率和鲁棒性具有重要贡献。尤其如此,因为所提出的算法可以实时应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验