School of Computer Science and Electronic Engineering, University of Essex, Colchester, CO4 3SQ, UK.
Med Biol Eng Comput. 2009 Mar;47(3):257-65. doi: 10.1007/s11517-009-0459-7. Epub 2009 Feb 19.
Due to the non-stationarity of EEG signals, online training and adaptation are essential to EEG based brain-computer interface (BCI) systems. Self-paced BCIs offer more natural human-machine interaction than synchronous BCIs, but it is a great challenge to train and adapt a self-paced BCI online because the user's control intention and timing are usually unknown. This paper proposes a novel motor imagery based self-paced BCI paradigm for controlling a simulated robot in a specifically designed environment which is able to provide user's control intention and timing during online experiments, so that online training and adaptation of the motor imagery based self-paced BCI can be effectively investigated. We demonstrate the usefulness of the proposed paradigm with an extended Kalman filter based method to adapt the BCI classifier parameters, with experimental results of online self-paced BCI training with four subjects.
由于 EEG 信号的非平稳性,基于 EEG 的脑机接口 (BCI) 系统需要在线训练和自适应。与同步 BCI 相比,自定步速 BCI 提供了更自然的人机交互,但在线训练和自适应自定步速 BCI 是一个巨大的挑战,因为用户的控制意图和时间通常是未知的。本文提出了一种基于运动想象的新型自定步速 BCI 范式,用于控制在特定设计的环境中模拟机器人,该环境能够在在线实验期间提供用户的控制意图和时间,从而有效地研究基于运动想象的自定步速 BCI 的在线训练和自适应。我们使用基于扩展卡尔曼滤波器的方法来自适应 BCI 分类器参数,展示了所提出范式的有效性,该方法通过四名受试者进行了在线自定步速 BCI 训练的实验结果。