Suppr超能文献

在持续暴露于谷氨酸的原代小脑颗粒神经元培养物中,线粒体的原位呼吸和生物能量状态。

In situ respiration and bioenergetic status of mitochondria in primary cerebellar granule neuronal cultures exposed continuously to glutamate.

作者信息

Jekabsons Mika B, Nicholls David G

机构信息

Buck Institute for Age Research, Novato, California 94945, USA.

出版信息

J Biol Chem. 2004 Jul 30;279(31):32989-3000. doi: 10.1074/jbc.M401540200. Epub 2004 May 27.

Abstract

Mitochondria play a central role in neuronal death during pathological exposure to glutamate (excitotoxicity). To investigate the detailed bioenergetics of the in situ mitochondria, a method is described to monitor continuously the respiration of primary cerebellar granule neuron cultures while simultaneously imaging cytoplasmic Ca(2+) and mitochondrial membrane potential. Coverslip-attached cells were perfused in an imaging chamber with upstream and downstream flow-through oxygen electrodes. The bioenergetic consequences of chronic glutamate exposure were investigated, including ATP supply and demand, proton leak, and mitochondrial respiratory capacity during chronic glutamate exposure. In 25 mM K(+) medium supplemented with 10% dialyzed serum, cells utilized 54% of their respiratory capacity in the absence of receptor activation (37% for ATP generation, 12% to drive the mitochondrial proton leak, and the residual 5% was nonmitochondrial). glutamate initially increased mitochondrial respiration from 51 to 68% of capacity, followed by a slow decline. It was estimated that 85% of this increased respiration was because of increased ATP demand, whereas 15% was attributable to a transient mitochondrial proton leak. N-Methyl-D-aspartate receptor activation was only responsible for 62% of the increased respiration. When adjusted for cell death over 3 h of glutamate exposure, respiration of the viable cells remained near basal and protonophore stimulated respiration to the same extent as control cells. Pyruvate-supplemented media protected cells from glutamate excitotoxicity, although this was associated with mitochondrial dysfunction. We conclude that excitotoxicity under these conditions is not because of an ATP deficit or uncoupling. Furthermore, mitochondria maintain the same respiratory capacity as in control cells.

摘要

在病理性暴露于谷氨酸(兴奋性毒性)期间,线粒体在神经元死亡中起核心作用。为了研究原位线粒体的详细生物能量学,本文描述了一种方法,可连续监测原代小脑颗粒神经元培养物的呼吸,同时对细胞质Ca(2+)和线粒体膜电位进行成像。将附着在盖玻片上的细胞置于成像室中,通过上游和下游流通式氧电极进行灌注。研究了慢性谷氨酸暴露的生物能量学后果,包括慢性谷氨酸暴露期间的ATP供需、质子泄漏和线粒体呼吸能力。在补充有10%透析血清的25 mM K(+)培养基中,细胞在无受体激活的情况下利用其呼吸能力的54%(37%用于ATP生成,12%用于驱动线粒体质子泄漏,其余5%为非线粒体的)。谷氨酸最初使线粒体呼吸从容量的51%增加到68%,随后缓慢下降。据估计,这种增加的呼吸中85%是由于ATP需求增加,而15%归因于短暂的线粒体质子泄漏。N-甲基-D-天冬氨酸受体激活仅导致62%的呼吸增加。在考虑谷氨酸暴露3小时内的细胞死亡后,存活细胞的呼吸保持在接近基础水平,质子载体刺激的呼吸与对照细胞的程度相同。补充丙酮酸的培养基可保护细胞免受谷氨酸兴奋性毒性,尽管这与线粒体功能障碍有关。我们得出结论,在这些条件下的兴奋性毒性不是由于ATP缺乏或解偶联。此外,线粒体维持与对照细胞相同的呼吸能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验