Salisbury Dean F, Griggs Carlye B, Shenton Martha E, McCarley Robert W
Department of Psychiatry, Harvard Medical School, Boston, and Cognitive Neuroscience Laboratory, McLean Hospital, Belmont, MA, USA.
Clin Neurophysiol. 2004 Jul;115(7):1550-8. doi: 10.1016/j.clinph.2004.01.028.
The P300 event-related potential shows anterior P300 increases on NoGo tasks (target stimulus=withhold response) relative to Go tasks (target stimulus=commit response). This 'NoGo anteriorization' has been hypothesized to reflect response inhibition. However, silent-count tasks show similar P300 anteriorization. The P300 anteriorization on silent-count tasks relative to Go tasks cannot reflect inhibition-related processes, and questions the degree to which anteriorization observed on NoGo trials can be ascribed to response inhibition. Comparison of anteriorization between the silent-count and NoGo tasks is thus essential. P300 topography on NoGo and silent-count tasks has not been previously compared.
P300 on Go, NoGo, and silent-count auditory oddball tasks were compared. If the NoGo P300 anteriorization reflects response inhibitory processes, the NoGo P300 should be larger anteriorly than the Go P300 (overt responses) and the silent-count P300s (covert responses). If anteriorization primarily reflects negative voltage Go task motor activity that reduces the normal frontal P300 amplitude, then the Go task P300 should be smaller than both the NoGo and silent-count P300s, which should not differ from one another.
The Go task elicited a bilaterally reduced frontal P300 and asymmetrical frontal P300 relative to both the NoGo and silent-count tasks. The NoGo task P300 and silent-count task P300 showed similar amplitude and topography. P300 and slow wave on the NoGo task were not asymmetrical.
The increased frontal P300 in NoGo tasks cannot be attributed solely to a positive-going inhibitory process, but likely reflects negative voltage response execution processes on Go trials. However, the alternative explanation that memory-related processes increase the silent-count P300 anteriorly to the same degree as NoGo inhibitory processes cannot be ruled out.
P300事件相关电位显示,与“执行”任务(目标刺激=执行反应)相比,“不执行”任务(目标刺激=抑制反应)时P300波前头部正向波幅增加。这种“不执行任务时波前头部正向波幅增加”被假设为反映反应抑制。然而,默读计数任务也显示出类似的P300波前头部正向波幅增加。与“执行”任务相比,默读计数任务时的P300波前头部正向波幅增加不能反映与抑制相关的过程,这对在“不执行”试验中观察到的波前头部正向波幅增加可归因于反应抑制的程度提出了质疑。因此,比较默读计数任务和“不执行”任务之间的波前头部正向波幅增加情况至关重要。此前尚未对“不执行”任务和默读计数任务的P300地形图进行比较。
比较了“执行”、“不执行”和默读计数听觉oddball任务中的P300。如果“不执行”任务的P300波前头部正向波幅增加反映反应抑制过程,那么“不执行”任务的P300在头部前方应比“执行”任务的P300(外显反应)和默读计数任务的P300(内隐反应)更大。如果波前头部正向波幅增加主要反映了“执行”任务中负电压运动活动,该活动降低了正常的额叶P300波幅,那么“执行”任务的P300应比“不执行”任务和默读计数任务的P300都小,而后两者之间不应有差异。
与“不执行”任务和默读计数任务相比,“执行”任务引发双侧额叶P300波幅降低且额叶P300不对称。“不执行”任务的P300和默读计数任务的P300显示出相似的波幅和地形图。“不执行”任务中的P300和慢波并无不对称性。
“不执行”任务中额叶P300增加不能仅归因于正向抑制过程,而可能反映了“执行”试验中的负电压反应执行过程。然而,与记忆相关的过程使默读计数任务的P300在头部前方增加到与“不执行”任务抑制过程相同程度这一替代性解释也不能排除。