Suppr超能文献

一个氧原子与硫的交换如何影响碳酸酐酶的催化循环?

How does the exchange of one oxygen atom with sulfur affect the catalytic cycle of carbonic anhydrase?

作者信息

Schenk Stephan, Kesselmeier Jürgen, Anders Ernst

机构信息

Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.

出版信息

Chemistry. 2004 Jun 21;10(12):3091-105. doi: 10.1002/chem.200305754.

Abstract

We have extended our investigations of the carbonic anhydrase (CA) cycle with the model system (H(3)N)(3)ZnOH and CO(2) by studying further heterocumulenes and catalysts. We investigated the hydration of COS, an atmospheric trace gas. This reaction plays an important role in the global COS cycle since biological consumption, that is, uptake by higher plants, algae, lichens, and soil, represents the dominant terrestrial sink for this gas. In this context, CA has been identified by a member of our group as the key enzyme for the consumption of COS by conversion into CO(2) and H(2)S. We investigated the hydration mechanism of COS by using density functional theory to elucidate the details of the catalytic cycle. Calculations were first performed for the uncatalyzed gas phase reaction. The rate-determining step for direct reaction of COS with H(2)O has an energy barrier of deltaG=53.2 kcal mol(-1). We then employed the CA model system (H(3)N)(3)ZnOH (1) and studied the effect on the catalytic hydration mechanism of replacing an oxygen atom with sulfur. When COS enters the carbonic anhydrase cycle, the sulfur atom is incorporated into the catalyst to yield (H(3)N)(3)ZnSH (27) and CO(2). The activation energy of the nucleophilic attack on COS, which is the rate-determining step, is somewhat higher (20.1 kcal mol(-1) in the gas phase) than that previously reported for CO(2). The sulfur-containing model 27 is also capable of catalyzing the reaction of CO(2) to produce thiocarbonic acid. A larger barrier has to be overcome for the reaction of 27 with CO(2) compared to that for the reaction of 1 with CO(2). At a well-defined stage of this cycle, a different reaction path can emerge: a water molecule helps to regenerate the original catalyst 1 from 27, a process accompanied by the formation of thiocarbonic acid. We finally demonstrate that nature selected a surprisingly elegant and efficient group of reactants, the L(3)ZnOH/CO(2)/H(2)O system, that helps to overcome any deactivation of the ubiquitous enzyme CA in nature.

摘要

我们通过研究更多的杂累积烯和催化剂,利用模型体系(H₃N)₃ZnOH和CO₂对碳酸酐酶(CA)循环进行了拓展研究。我们研究了大气痕量气体COS的水合作用。该反应在全球COS循环中起着重要作用,因为生物消耗,即高等植物、藻类、地衣和土壤的吸收,是该气体在陆地的主要汇。在这种背景下,我们团队的一名成员已确定CA是通过转化为CO₂和H₂S来消耗COS的关键酶。我们使用密度泛函理论研究了COS的水合机理,以阐明催化循环的细节。首先对无催化的气相反应进行了计算。COS与H₂O直接反应的速率决定步骤的能垒为ΔG = 53.2 kcal mol⁻¹。然后我们采用CA模型体系(H₃N)₃ZnOH(1),并研究了用硫取代氧原子对催化水合机理的影响。当COS进入碳酸酐酶循环时,硫原子被并入催化剂中,生成(H₃N)₃ZnSH(27)和CO₂。亲核进攻COS的活化能,即速率决定步骤,比之前报道的CO₂的活化能略高(气相中为20.1 kcal mol⁻¹)。含硫模型27也能够催化CO₂反应生成硫代碳酸。与1和CO₂的反应相比,27与CO₂的反应需要克服更大的能垒。在这个循环的一个明确阶段,可能会出现不同的反应路径:一个水分子有助于从27再生原始催化剂1,这个过程伴随着硫代碳酸的形成。我们最终证明,自然界选择了一组惊人优雅且高效的反应物,即L₃ZnOH/CO₂/H₂O体系,这有助于克服自然界中普遍存在的酶CA的任何失活。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验