Suppr超能文献

膜受体筛选与分析的进展。

Advances in membrane receptor screening and analysis.

作者信息

Cooper Matthew A

机构信息

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.

出版信息

J Mol Recognit. 2004 Jul-Aug;17(4):286-315. doi: 10.1002/jmr.675.

Abstract

During the last decade there has been significant progress in the development of analytical techniques for the screening of ligand binding to membranes and membrane receptors. This review focuses on developments using label-free assays that facilitate ligand-membrane-receptor screening without the need for chemical-, biological- or radiological-labelled reagents. These assays include acoustic, optical surface plasmon resonance biosensing, sedimentation (analytical ultracentrifugation), chromatographic assays, isothermal titration calorimetry and differential scanning calorimetry. The merits and applications of cell-based screening systems and of different model membrane systems, including planar supported lipid layers, bead-supported membranes and lipid micro-arrays, are discussed. Recent advances involving more established techniques including intrinsic fluorescence, FRET spectroscopy, scintillation proximity assays and automated patch clamping are presented along with applications to peripheral membrane proteins, ion channels and G protein-coupled receptors. Novel high-throughput assays for determination of drug- and protein-partitioning in membranes are also highlighted. To aid the experimenter, a brief synopsis of the techniques commonly employed to purify and reconstitute membranes and membrane receptors is included.

摘要

在过去十年中,用于筛选配体与膜及膜受体结合的分析技术取得了重大进展。本综述重点关注使用无标记检测方法的进展,这些方法有助于配体 - 膜 - 受体筛选,而无需化学、生物或放射性标记试剂。这些检测方法包括声学、光学表面等离子体共振生物传感、沉降(分析超速离心)、色谱检测、等温滴定量热法和差示扫描量热法。讨论了基于细胞的筛选系统以及不同模型膜系统(包括平面支撑脂质层、珠支撑膜和脂质微阵列)的优点和应用。介绍了涉及更成熟技术(包括固有荧光、荧光共振能量转移光谱、闪烁邻近检测和自动膜片钳)的最新进展以及在外周膜蛋白、离子通道和G蛋白偶联受体方面的应用。还强调了用于测定药物和蛋白质在膜中分配的新型高通量检测方法。为方便实验人员,还包括了用于纯化和重组膜及膜受体的常用技术的简要概述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验