Suppr超能文献

高强度间歇训练可增强人体骨骼肌在高强度而非低强度动态运动初始阶段的摄氧量。

Intense interval training enhances human skeletal muscle oxygen uptake in the initial phase of dynamic exercise at high but not at low intensities.

作者信息

Krustrup Peter, Hellsten Ylva, Bangsbo Jens

机构信息

Copenhagen Muscle Research Centre, Institute of Exercise and Sport Sciences, Department of Human Physiology, University of Copenhagen, Copenhagen, Denmark.

出版信息

J Physiol. 2004 Aug 15;559(Pt 1):335-45. doi: 10.1113/jphysiol.2004.062232. Epub 2004 Jul 2.

Abstract

The present study tested the hypothesis that intense interval training enhances human skeletal muscle blood flow and oxygen uptake (VO2) at the onset of dynamic exercise. We also investigated whether possible training effects were dependent on exercise intensity. Six habitually active males carried out 7 weeks of intermittent-exercise one-legged knee-extensor training at an intensity corresponding to approximately 150% of peak thigh VO2 on three to five occasions per week. After the training period, cardiovascular and metabolic measurements were performed during knee-extensor exercise with the trained leg (TL) and the control leg (CL) for 10 min at intensities of 10 and 30 W, and also for 4 min at 50 W. Femoral venous blood flow was higher (P < 0.05) in TL than CL from 75 to 180 s at 30 W ( approximately 75 s: 3.43 +/- 0.20 versus 2.99 +/- 0.18 l min(-1)) and from 40 to 210 s at 50 W ( approximately 75 s: 5.03 +/- 0.41 versus 4.13 +/- 0.33 l min(-1)). Mean arterial pressure was not different between legs. Thus, thigh vascular conductance was higher (P < 0.05) in TL than CL from 35 to 270 s at 30 W and from 150 to 240 s at 50 W. Femoral arterial-venous (a-v) O2 difference was higher (P < 0.05) in TL than CL from 20 to 70 s at 30 W, but not different between TL and CL at 50 W. Thigh VO2 was higher (P < 0.05) in TL than CL from 20 to 110 s at 30 W ( approximately 45 s: 0.38 +/- 0.04 versus 0.30 +/- 0.03 l min(-1)), and from 45 to 240 s at 50 W ( approximately 45 s: 0.64 +/- 0.06 versus 0.44 +/- 0.08 l min(-1)). No differences were observed between TL and CL during exercise at 10 W. The present data demonstrate that intense interval training elevates muscle oxygen uptake, blood flow and vascular conductance in the initial phase of exercise at high, but not at low, intensities.

摘要

本研究检验了以下假设

高强度间歇训练可增强动态运动开始时人体骨骼肌的血流和摄氧量(VO₂)。我们还研究了可能的训练效果是否取决于运动强度。六名有运动习惯的男性进行了为期7周的单腿膝关节伸展间歇训练,训练强度相当于大腿VO₂峰值的约150%,每周进行三至五次。训练期结束后,在膝关节伸展运动期间,对训练腿(TL)和对照腿(CL)进行心血管和代谢测量,在10 W强度下持续10分钟,在30 W强度下持续10分钟,在50 W强度下持续4分钟。在30 W时,从75至180秒(约75秒:3.43±0.20对2.99±0.18升·分钟⁻¹)以及在50 W时,从40至210秒(约75秒:5.03±0.41对4.13±0.33升·分钟⁻¹),TL的股静脉血流量高于CL(P<0.05)。两腿之间的平均动脉压无差异。因此,在30 W时,从35至270秒以及在50 W时,从150至240秒,TL的大腿血管传导率高于CL(P<0.05)。在30 W时,从20至70秒,TL的股动脉-静脉(a-v)氧差高于CL(P<0.05),但在50 W时,TL和CL之间无差异。在30 W时,从20至110秒(约45秒:0.38±0.04对0.30±0.03升·分钟⁻¹)以及在50 W时,从45至240秒(约45秒:0.64±0.06对0.44±0.08升·分钟⁻¹),TL的大腿VO₂高于CL(P<0.05)。在10 W运动期间,TL和CL之间未观察到差异。目前的数据表明,高强度间歇训练在高强度而非低强度运动的初始阶段可提高肌肉摄氧量、血流量和血管传导率。

相似文献

2
Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle.
J Physiol. 2004 Feb 1;554(Pt 3):857-70. doi: 10.1113/jphysiol.2003.050658. Epub 2003 Nov 21.
3
Enhanced pyruvate dehydrogenase activity does not affect muscle O2 uptake at onset of intense exercise in humans.
Am J Physiol Regul Integr Comp Physiol. 2002 Jan;282(1):R273-80. doi: 10.1152/ajpregu.2002.282.1.R273.
4
Muscle oxygen kinetics at onset of intense dynamic exercise in humans.
Am J Physiol Regul Integr Comp Physiol. 2000 Sep;279(3):R899-906. doi: 10.1152/ajpregu.2000.279.3.R899.
6
Muscle oxygen uptake and energy turnover during dynamic exercise at different contraction frequencies in humans.
J Physiol. 2001 Oct 1;536(Pt 1):261-71. doi: 10.1111/j.1469-7793.2001.00261.x.
7
One-legged endurance training: leg blood flow and oxygen extraction during cycling exercise.
Acta Physiol (Oxf). 2012 May;205(1):177-85. doi: 10.1111/j.1748-1716.2011.02383.x. Epub 2011 Dec 3.
8
Infusion of ATP increases leg oxygen delivery but not oxygen uptake in the initial phase of intense knee-extensor exercise in humans.
Exp Physiol. 2014 Oct;99(10):1399-408. doi: 10.1113/expphysiol.2014.081141. Epub 2014 Aug 1.
9
Kinetics of .VO2 and femoral artery blood flow during heavy-intensity, knee-extension exercise.
J Appl Physiol (1985). 2005 Aug;99(2):683-90. doi: 10.1152/japplphysiol.00707.2004. Epub 2005 Apr 7.
10
Hemodynamics and O2 uptake during maximal knee extensor exercise in untrained and trained human quadriceps muscle: effects of hyperoxia.
J Appl Physiol (1985). 2004 Nov;97(5):1796-802. doi: 10.1152/japplphysiol.00169.2004. Epub 2004 Jun 18.

引用本文的文献

1
VOmax (VOpeak) in elite athletes under high-intensity interval training: A meta-analysis.
Heliyon. 2023 Jun 1;9(6):e16663. doi: 10.1016/j.heliyon.2023.e16663. eCollection 2023 Jun.
3
4
Response to Three Weeks of Sprint Interval Training Cannot Be Explained by the Exertional Level.
Medicina (Kaunas). 2020 Aug 7;56(8):395. doi: 10.3390/medicina56080395.
7
Evidence of a greater functional sympatholysis in habitually aerobic trained postmenopausal women.
J Appl Physiol (1985). 2018 Mar 1;124(3):583-591. doi: 10.1152/japplphysiol.00411.2017. Epub 2017 Sep 28.
8
Comparison between two types of anaerobic speed endurance training in competitive soccer players.
J Hum Kinet. 2016 Jul 2;51:183-192. doi: 10.1515/hukin-2015-0181. eCollection 2016 Jun 1.
9
A spherical-plot solution to linking acceleration metrics with animal performance, state, behaviour and lifestyle.
Mov Ecol. 2016 Sep 23;4:22. doi: 10.1186/s40462-016-0088-3. eCollection 2016.
10
Inflammatory, lipid, and body composition responses to interval training or moderate aerobic training.
Eur J Appl Physiol. 2016 Mar;116(3):601-9. doi: 10.1007/s00421-015-3308-4. Epub 2015 Dec 31.

本文引用的文献

1
The regulation of respiration and circulation during the initial stages of muscular work.
J Physiol. 1913 Oct 17;47(1-2):112-36. doi: 10.1113/jphysiol.1913.sp001616.
2
Vasodilatory mechanisms in contracting skeletal muscle.
J Appl Physiol (1985). 2004 Jul;97(1):393-403. doi: 10.1152/japplphysiol.00179.2004.
3
Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle.
J Physiol. 2004 Jun 1;557(Pt 2):571-82. doi: 10.1113/jphysiol.2003.057711. Epub 2004 Mar 12.
4
The slow component of oxygen uptake during intense, sub-maximal exercise in man is associated with additional fibre recruitment.
Pflugers Arch. 2004 Mar;447(6):855-66. doi: 10.1007/s00424-003-1203-z. Epub 2004 Jan 31.
5
Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle.
Am J Physiol Endocrinol Metab. 2004 Feb;286(2):E245-51. doi: 10.1152/ajpendo.00303.2003. Epub 2003 Oct 14.
6
Oxygen gradients in the microcirculation.
Physiol Rev. 2003 Jul;83(3):933-63. doi: 10.1152/physrev.00034.2002.
7
ATP and heat production in human skeletal muscle during dynamic exercise: higher efficiency of anaerobic than aerobic ATP resynthesis.
J Physiol. 2003 May 15;549(Pt 1):255-69. doi: 10.1113/jphysiol.2002.035089. Epub 2003 Mar 21.
10
Oxygen uptake kinetics during treadmill running across exercise intensity domains.
Eur J Appl Physiol. 2002 Feb;86(4):347-54. doi: 10.1007/s00421-001-0556-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验