Suppr超能文献

气体中的广义熵产生表达式

Generalized Entropy Generation Expressions in Gases.

作者信息

Peters Michael H

机构信息

Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 West Main St., Richmond, VA 23284, USA.

出版信息

Entropy (Basel). 2019 Mar 27;21(4):330. doi: 10.3390/e21040330.

Abstract

In this study, we generalize our previous methods for obtaining entropy generation in gases without the need to carry through a specific expansion method, such as the Chapman-Enskog method. The generalization, which is based on a scaling analysis, allows for the study of entropy generation in gases for any arbitrary state of the gas and consistently across the conservation equations of mass, momentum, energy, and entropy. Thus, it is shown that it is theoretically possible to alter specific expressions and associated physical outcomes for entropy generation by changing the operating process gas state to regions significantly different than the perturbed, local equilibrium or Chapman-Enskog type state. Such flows could include, for example, hypersonic flows or flows that may be generally called hyper-equilibrium state flows. Our formal scaling analysis also provides partial insight into the nature of entropy generation from an informatics perspective, where we specifically demonstrate the association of entropy generation in gases with uncertainty generated by the approximation error associated with density function expansions.

摘要

在本研究中,我们推广了我们之前用于在无需采用特定膨胀方法(如查普曼 - 恩斯科格方法)的情况下获取气体中熵产生的方法。这种基于尺度分析的推广,使得能够研究气体在任意状态下的熵产生情况,并且能在质量、动量、能量和熵的守恒方程之间保持一致性。因此,结果表明,通过将运行过程中的气体状态改变到与受扰的局部平衡态或查普曼 - 恩斯科格型状态显著不同的区域,从理论上有可能改变熵产生的特定表达式及相关的物理结果。此类流动例如可能包括高超音速流动或通常可称为超平衡态流动的流动。我们的形式尺度分析还从信息学角度对熵产生的本质提供了部分见解,在此我们具体展示了气体中熵产生与由密度函数展开相关的近似误差所产生的不确定性之间的关联。

相似文献

1
Generalized Entropy Generation Expressions in Gases.
Entropy (Basel). 2019 Mar 27;21(4):330. doi: 10.3390/e21040330.
2
Stability analysis of phonon transport equations derived via the Chapman-Enskog method and transformation of variables.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Oct;80(4 Pt 1):041114. doi: 10.1103/PhysRevE.80.041114. Epub 2009 Oct 9.
3
General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures.
J Chem Phys. 2015 Apr 7;142(13):134109. doi: 10.1063/1.4915926.
5
Mixtures of relativistic gases in gravitational fields: Combined Chapman-Enskog and Grad method and the Onsager relations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 May;91(5):052139. doi: 10.1103/PhysRevE.91.052139. Epub 2015 May 26.
6
The fourth law of thermodynamics: steepest entropy ascent.
Philos Trans A Math Phys Eng Sci. 2020 May;378(2170):20190168. doi: 10.1098/rsta.2019.0168. Epub 2020 Mar 30.
7
Nonlinear dissipation and nonequilibrium gas flows.
Phys Rev E. 2019 Sep;100(3-1):032101. doi: 10.1103/PhysRevE.100.032101.
8
Chapman-Enskog expansion about nonequilibrium states with application to the sheared granular fluid.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Feb;73(2 Pt 1):021302. doi: 10.1103/PhysRevE.73.021302. Epub 2006 Feb 22.
9
Entropy and the Second Law of Thermodynamics-The Nonequilibrium Perspective.
Entropy (Basel). 2020 Jul 21;22(7):793. doi: 10.3390/e22070793.
10
Third law of thermodynamics as a key test of generalized entropies.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Feb;91(2):022105. doi: 10.1103/PhysRevE.91.022105. Epub 2015 Feb 6.

本文引用的文献

1
Maximum entropy formulation of the Kirkwood superposition approximation.
J Chem Phys. 2004 Aug 22;121(8):3657-66. doi: 10.1063/1.1776552.
2
Chaos for Liouville probability densities.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Apr;53(4):3387-3401. doi: 10.1103/physreve.53.3387.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验