Suppr超能文献

脊椎动物的基因组大小与灭绝风险

Genome size and extinction risk in vertebrates.

作者信息

Vinogradov Alexander E

机构信息

Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Avenue 4, St Petersburg 194064, Russia.

出版信息

Proc Biol Sci. 2004 Aug 22;271(1549):1701-5. doi: 10.1098/rspb.2004.2776.

Abstract

The hypothesis of 'selfish DNA' is tested for the case of animals using the relation between genome size and conservation status of a given species. In contrast to plants, where the larger genome was previously shown to increase the likelihood of extinction, the picture is more complicated in animals. At the within-families and within-orders levels, the larger genome increases the risk of extinction only in reptiles and birds (which have the smallest genomes among tetrapods). In fishes and amphibians, the effect is caused by the higher taxonomic levels (above order). In several phylogenetic lineages of anamniotes, there is a correlation between a higher fraction of threatened species and a lower number of extant species in a lineage with the larger genome. In mammals, no effect was observed at any taxonomic level. The obtained data support the concept of hierarchical selection. It is also shown that, in plants and reptiles, the probability of being threatened increases from less than 10% to more than 80% with the increase in genome size, which can help in establishing conservation priorities.

摘要

利用给定物种的基因组大小与保护状况之间的关系,对动物的“自私DNA”假说进行了检验。与植物不同,在植物中先前已表明较大的基因组会增加灭绝的可能性,而在动物中情况更为复杂。在科内和目内水平上,较大的基因组仅在爬行动物和鸟类(它们在四足动物中基因组最小)中增加灭绝风险。在鱼类和两栖动物中,这种影响是由更高的分类级别(目以上)造成的。在无羊膜动物的几个系统发育谱系中,基因组较大的谱系中受威胁物种比例较高与现存物种数量较少之间存在相关性。在哺乳动物中,在任何分类级别都未观察到影响。所获得的数据支持分层选择的概念。还表明,在植物和爬行动物中,随着基因组大小的增加,受到威胁的概率从不到10%增加到超过80%,这有助于确定保护优先级。

相似文献

1
Genome size and extinction risk in vertebrates.
Proc Biol Sci. 2004 Aug 22;271(1549):1701-5. doi: 10.1098/rspb.2004.2776.
2
The impact of conservation on the status of the world's vertebrates.
Science. 2010 Dec 10;330(6010):1503-9. doi: 10.1126/science.1194442. Epub 2010 Oct 26.
3
A global reptile assessment highlights shared conservation needs of tetrapods.
Nature. 2022 May;605(7909):285-290. doi: 10.1038/s41586-022-04664-7. Epub 2022 Apr 27.
4
Single-copy DNA and vertebrate phylogeny.
Cytogenet Cell Genet. 1982;34(1-2):93-101. doi: 10.1159/000131797.
5
Popular interest in vertebrates does not reflect extinction risk and is associated with bias in conservation investment.
PLoS One. 2018 Sep 26;13(9):e0203694. doi: 10.1371/journal.pone.0203694. eCollection 2018.
6
Benefits to poorly studied taxa of conservation of bird and mammal diversity on islands.
Conserv Biol. 2015 Feb;29(1):133-42. doi: 10.1111/cobi.12354. Epub 2014 Jul 26.
7
Evolutionary changes in CpG and methylation levels in the genome of vertebrates.
Gene. 1997 Dec 31;205(1-2):109-18. doi: 10.1016/s0378-1119(97)00475-7.
8
Incorporating evolutionary measures into conservation prioritization.
Conserv Biol. 2006 Dec;20(6):1670-8. doi: 10.1111/j.1523-1739.2006.00555.x.
9
Extinction risk and diversification are linked in a plant biodiversity hotspot.
PLoS Biol. 2011 May;9(5):e1000620. doi: 10.1371/journal.pbio.1000620. Epub 2011 May 24.

引用本文的文献

2
Metamorphosis Imposes Variable Constraints on Genome Expansion through Effects on Development.
Integr Org Biol. 2023 Apr 18;5(1):obad015. doi: 10.1093/iob/obad015. eCollection 2023.
3
Cytogenetic characterization, rDNA mapping and quantification of the nuclear DNA content in Guichenot, 1848 (Perciformes, Centrolophidae).
Comp Cytogenet. 2020 Jul 14;14(3):319-328. doi: 10.3897/CompCytogen.v14i3.53087. eCollection 2020.
5
Different Evolutionary Paths to Complexity for Small and Large Populations of Digital Organisms.
PLoS Comput Biol. 2016 Dec 6;12(12):e1005066. doi: 10.1371/journal.pcbi.1005066. eCollection 2016 Dec.
6
Accommodating the load: The transposable element content of very large genomes.
Mob Genet Elements. 2013 Mar 1;3(2):e24775. doi: 10.4161/mge.24775.
8
Genome Size and Species Diversification.
Evol Biol. 2010 Dec;37(4):227-233. doi: 10.1007/s11692-010-9093-4. Epub 2010 Sep 17.
9
Selfish genetic elements, genetic conflict, and evolutionary innovation.
Proc Natl Acad Sci U S A. 2011 Jun 28;108 Suppl 2(Suppl 2):10863-70. doi: 10.1073/pnas.1102343108. Epub 2011 Jun 20.
10
Endangered species hold clues to human evolution.
J Hered. 2010 Jul-Aug;101(4):437-47. doi: 10.1093/jhered/esq016. Epub 2010 Mar 23.

本文引用的文献

1
Dryness increases predation risk in efts: support for an amphibian decline hypothesis.
Oecologia. 2003 May;135(4):657-64. doi: 10.1007/s00442-003-1206-7. Epub 2003 Mar 4.
2
Phenological resonance and quantum life history.
J Theor Biol. 2004 Jun 7;228(3):417-20. doi: 10.1016/j.jtbi.2004.02.003.
3
Reptiles: a group of transition in the evolution of genome size and of the nucleotypic effect.
Cytogenet Genome Res. 2003;101(2):166-71. doi: 10.1159/000074174.
4
Selfish DNA is maladaptive: evidence from the plant Red List.
Trends Genet. 2003 Nov;19(11):609-14. doi: 10.1016/j.tig.2003.09.010.
5
A bird's-eye view of the C-value enigma: genome size, cell size, and metabolic rate in the class aves.
Evolution. 2002 Jan;56(1):121-30. doi: 10.1111/j.0014-3820.2002.tb00854.x.
6
The sequence of the human genome.
Science. 2001 Feb 16;291(5507):1304-51. doi: 10.1126/science.1058040.
7
Buffering: a possible passive-homeostasis role for redundant DNA.
J Theor Biol. 1998 Jul 27;193(2):197-9. doi: 10.1006/jtbi.1997.0629.
8
Plant genome values: how much do we know?
Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2011-6. doi: 10.1073/pnas.95.5.2011.
9
Genome size and GC-percent in vertebrates as determined by flow cytometry: the triangular relationship.
Cytometry. 1998 Feb 1;31(2):100-9. doi: 10.1002/(sici)1097-0320(19980201)31:2<100::aid-cyto5>3.0.co;2-q.
10
Selfish DNA: the ultimate parasite.
Nature. 1980 Apr 17;284(5757):604-7. doi: 10.1038/284604a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验