Suppr超能文献

一种具有26400个电极的1024通道CMOS微电极阵列,用于体外记录和刺激电生细胞。

A 1024-Channel CMOS Microelectrode Array With 26,400 Electrodes for Recording and Stimulation of Electrogenic Cells In Vitro.

作者信息

Ballini Marco, Müller Jan, Livi Paolo, Chen Yihui, Frey Urs, Stettler Alexander, Shadmani Amir, Viswam Vijay, Jones Ian Lloyd, Jäckel David, Radivojevic Milos, Lewandowska Marta K, Gong Wei, Fiscella Michele, Bakkum Douglas J, Heer Flavio, Hierlemann Andreas

机构信息

D-BSSE, ETH Zurich, 4058 Basel, Switzerland. He is now with IMEC vzw, 3001 Leuven, Belgium.

Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland.

出版信息

IEEE J Solid-State Circuits. 2014 Nov;49(11):2705-2719. doi: 10.1109/JSSC.2014.2359219.

Abstract

To advance our understanding of the functioning of neuronal ensembles, systems are needed to enable simultaneous recording from a large number of individual neurons at high spatiotemporal resolution and good signal-to-noise ratio. Moreover, stimulation capability is highly desirable for investigating, for example, plasticity and learning processes. Here, we present a microelectrode array (MEA) system on a single CMOS die for recording and stimulation. The system incorporates 26,400 platinum electrodes, fabricated by in-house post-processing, over a large sensing area (3.85 × 2.10 mm) with sub-cellular spatial resolution (pitch of 17.5 μm). Owing to an area and power efficient implementation, we were able to integrate 1024 readout channels on chip to record extracellular signals from a user-specified selection of electrodes. These channels feature noise values of 2.4 μV in the action-potential band (300 Hz-10 kHz) and 5.4 μV in the local-field-potential band (1 Hz-300 Hz), and provide programmable gain (up to 78 dB) to accommodate various biological preparations. Amplified and filtered signals are digitized by 10 bit parallel single-slope ADCs at 20 kSamples/s. The system also includes 32 stimulation units, which can elicit neural spikes through either current or voltage pulses. The chip consumes only 75 mW in total, which obviates the need of active cooling even for sensitive cell cultures.

摘要

为了加深我们对神经元集群功能的理解,需要能够以高时空分辨率和良好的信噪比同时记录大量单个神经元的系统。此外,例如在研究可塑性和学习过程时,刺激能力是非常必要的。在此,我们展示了一种集成在单个CMOS芯片上的用于记录和刺激的微电极阵列(MEA)系统。该系统通过内部后处理工艺,在大面积传感区域(3.85×2.10毫米)上制造了26400个铂电极,具有亚细胞空间分辨率(间距为17.5微米)。由于采用了面积和功耗高效的实现方式,我们能够在芯片上集成1024个读出通道,以记录用户指定选择的电极的细胞外信号。这些通道在动作电位频段(300赫兹至10千赫兹)的噪声值为2.4微伏,在局部场电位频段(1赫兹至300赫兹)的噪声值为5.4微伏,并提供可编程增益(高达78分贝)以适应各种生物制剂。放大和滤波后的信号由10位并行单斜率模数转换器以20千样本/秒的速率进行数字化。该系统还包括32个刺激单元,可通过电流或电压脉冲引发神经尖峰。芯片总功耗仅为75毫瓦,即使对于敏感的细胞培养物也无需主动冷却。

相似文献

8

引用本文的文献

1
Deviance detection and regularity sensitivity in dissociated neuronal cultures.解离神经元培养中的偏差检测与规律敏感性
Front Neural Circuits. 2025 Aug 25;19:1584322. doi: 10.3389/fncir.2025.1584322. eCollection 2025.
4
Advanced Brain-on-a-Chip for Wetware Computing: A Review.用于湿件计算的先进片上脑:综述
Adv Sci (Weinh). 2025 Sep;12(33):e08120. doi: 10.1002/advs.202508120. Epub 2025 Jul 23.
5
Dissociated neuronal cultures as model systems for self-organized prediction.作为自组织预测模型系统的解离神经元培养物
Front Neural Circuits. 2025 Jun 25;19:1568652. doi: 10.3389/fncir.2025.1568652. eCollection 2025.
6
Opportunities and Challenges of Brain-on-a-Chip Interfaces.脑机接口的机遇与挑战
Cyborg Bionic Syst. 2025 Jun 17;6:0287. doi: 10.34133/cbsystems.0287. eCollection 2025.

本文引用的文献

1
Physical principles for scalable neural recording.可扩展神经记录的物理原理。
Front Comput Neurosci. 2013 Oct 21;7:137. doi: 10.3389/fncom.2013.00137. eCollection 2013.
4
Modeling of the cell-electrode interface noise for microelectrode arrays.微电极阵列的细胞-电极界面噪声建模
IEEE Trans Biomed Circuits Syst. 2012 Dec;6(6):605-13. doi: 10.1109/TBCAS.2012.2189569.
6
Brain-Silicon Interface for High-Resolution in vitro Neural Recording.脑-硅界面的高分辨率体外神经记录
IEEE Trans Biomed Circuits Syst. 2007 Mar;1(1):56-62. doi: 10.1109/TBCAS.2007.893181.
8
The organization of two new cortical interneuronal circuits.两个新皮质中间神经元回路的组织。
Nat Neurosci. 2013 Feb;16(2):210-8. doi: 10.1038/nn.3305. Epub 2013 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验