Devos A, Simonetti A W, van der Graaf M, Lukas L, Suykens J A K, Vanhamme L, Buydens L M C, Heerschap A, Van Huffel S
K.U. Leuven, ESAT-SCD (SISTA), Leuven, Belgium.
J Magn Reson. 2005 Apr;173(2):218-28. doi: 10.1016/j.jmr.2004.12.007.
This study investigated the value of information from both magnetic resonance imaging and magnetic resonance spectroscopic imaging (MRSI) to automated discrimination of brain tumours. The influence of imaging intensities and metabolic data was tested by comparing the use of MR spectra from MRSI, MR imaging intensities, peak integration values obtained from the MR spectra and a combination of the latter two. Three classification techniques were objectively compared: linear discriminant analysis, least squares support vector machines (LS-SVM) with a linear kernel as linear techniques and LS-SVM with radial basis function kernel as a nonlinear technique. Classifiers were evaluated over 100 stratified random splittings of the dataset into training and test sets. The area under the receiver operating characteristic (ROC) curve (AUC) was used as a global performance measure on test data. In general, all techniques obtained a high performance when using peak integration values with or without MR imaging intensities. For example for low- versus high-grade tumours, low- versus high-grade gliomas and gliomas versus meningiomas, the mean test AUC was higher than 0.91, 0.94, and 0.99, respectively, when both MR imaging intensities and peak integration values were used. The use of metabolic data from MRSI significantly improved automated classification of brain tumour types compared to the use of MR imaging intensities solely.
本研究调查了磁共振成像(MRI)和磁共振波谱成像(MRSI)信息对脑肿瘤自动鉴别的价值。通过比较使用MRSI的磁共振波谱、MRI成像强度、从磁共振波谱获得的峰积分值以及后两者的组合,测试了成像强度和代谢数据的影响。客观比较了三种分类技术:作为线性技术的线性判别分析、具有线性核的最小二乘支持向量机(LS-SVM)以及作为非线性技术的具有径向基函数核的LS-SVM。在将数据集随机分层划分为训练集和测试集的100次划分上对分类器进行评估。受试者操作特征(ROC)曲线下面积(AUC)用作测试数据的整体性能指标。总体而言,在使用有或没有MRI成像强度的峰积分值时,所有技术都获得了较高的性能。例如,对于低级别与高级别肿瘤、低级别与高级别胶质瘤以及胶质瘤与脑膜瘤,当同时使用MRI成像强度和峰积分值时,平均测试AUC分别高于0.91、0.94和0.99。与仅使用MRI成像强度相比,使用MRSI的代谢数据显著改善了脑肿瘤类型的自动分类。