Suppr超能文献

基于相关性的功能性脑网络的可扩展几何学习

Scalable geometric learning with correlation-based functional brain networks.

作者信息

You Kisung, Lee Yelim, Park Hae-Jeong

机构信息

Department of Mathematics, Baruch College, City University of New York, New York, USA.

Graduate School of Medical Science, Brain Korea 21 Project, Department of Nuclear Medicine, Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea.

出版信息

Sci Rep. 2025 Jul 2;15(1):22685. doi: 10.1038/s41598-025-07703-1.

Abstract

Correlation matrices serve as fundamental representations of functional brain networks in neuroimaging. Conventional analyses often treat pairwise interactions independently within Euclidean space, neglecting the underlying geometry of correlation structures. Although recent efforts have leveraged the quotient geometry of the correlation manifold, they suffer from computational inefficiency and numerical instability, especially in high-dimensional settings. We propose a novel geometric framework that uses diffeomorphic transformations to embed correlation matrices into a Euclidean space while preserving critical manifold characteristics. This approach enables scalable, geometry-aware analyses and integrates seamlessly with standard machine learning techniques, including regression, dimensionality reduction, and clustering. Moreover, it facilitates population-level inference of brain networks. Simulation studies demonstrate significant improvements in both computational speed and predictive accuracy over existing manifold-based methods. Applications to real neuroimaging data further highlight the framework's versatility, improving behavioral score prediction, subject fingerprinting in resting-state fMRI, and hypothesis testing in EEG analyses. To support community adoption and reproducibility, we provide an open-source MATLAB toolbox implementing the proposed techniques. Our work opens new directions for efficient and interpretable geometric modeling in large-scale functional brain network research.

摘要

相关矩阵是神经影像学中功能性脑网络的基本表示形式。传统分析通常在欧几里得空间内独立处理成对相互作用,而忽略了相关结构的潜在几何特征。尽管最近的研究利用了相关流形的商几何,但它们存在计算效率低下和数值不稳定的问题,尤其是在高维情况下。我们提出了一种新颖的几何框架,该框架使用微分同胚变换将相关矩阵嵌入欧几里得空间,同时保留关键的流形特征。这种方法能够进行可扩展的、几何感知分析,并与标准机器学习技术无缝集成,包括回归、降维和聚类。此外,它还便于进行脑网络的群体水平推断。模拟研究表明,与现有的基于流形的方法相比,该方法在计算速度和预测准确性方面都有显著提高。对真实神经影像数据的应用进一步突出了该框架的通用性,改善了行为评分预测、静息态功能磁共振成像中的个体指纹识别以及脑电图分析中的假设检验。为了支持社区采用和可重复性,我们提供了一个实现所提出技术的开源MATLAB工具箱。我们的工作为大规模功能性脑网络研究中的高效且可解释的几何建模开辟了新方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验