Suppr超能文献

通过半参数加速失效时间混合模型对随机临床试验进行潜在亚组分析。

Latent subgroup analysis of a randomized clinical trial through a semiparametric accelerated failure time mixture model.

作者信息

Altstein L, Li G

机构信息

Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA.

出版信息

Biometrics. 2013 Mar;69(1):52-61. doi: 10.1111/j.1541-0420.2012.01818.x. Epub 2013 Feb 5.

Abstract

This article studies a semiparametric accelerated failure time mixture model for estimation of a biological treatment effect on a latent subgroup of interest with a time-to-event outcome in randomized clinical trials. Latency is induced because membership is observable in one arm of the trial and unidentified in the other. This method is useful in randomized clinical trials with all-or-none noncompliance when patients in the control arm have no access to active treatment and in, for example, oncology trials when a biopsy used to identify the latent subgroup is performed only on subjects randomized to active treatment. We derive a computational method to estimate model parameters by iterating between an expectation step and a weighted Buckley-James optimization step. The bootstrap method is used for variance estimation, and the performance of our method is corroborated in simulation. We illustrate our method through an analysis of a multicenter selective lymphadenectomy trial for melanoma.

摘要

本文研究了一种半参数加速失效时间混合模型,用于在随机临床试验中估计生物治疗对潜在感兴趣亚组的治疗效果,该亚组具有事件发生时间结局。之所以会产生潜伏期,是因为在试验的一个组中成员身份是可观察到的,而在另一组中则无法确定。当对照组患者无法接受活性治疗时,这种方法在全有或全无的不依从随机临床试验中很有用,例如在肿瘤学试验中,用于识别潜在亚组的活检仅在随机接受活性治疗的受试者身上进行。我们推导了一种计算方法,通过在期望步骤和加权Buckley-James优化步骤之间迭代来估计模型参数。采用自助法进行方差估计,并在模拟中验证了我们方法的性能。我们通过对一项多中心黑色素瘤选择性淋巴结清扫试验的分析来说明我们的方法。

相似文献

1
Latent subgroup analysis of a randomized clinical trial through a semiparametric accelerated failure time mixture model.
Biometrics. 2013 Mar;69(1):52-61. doi: 10.1111/j.1541-0420.2012.01818.x. Epub 2013 Feb 5.
2
A method to estimate treatment efficacy among latent subgroups of a randomized clinical trial.
Stat Med. 2011 Mar 30;30(7):709-17. doi: 10.1002/sim.4131. Epub 2010 Nov 30.
3
Identifiability and estimation of causal effects in randomized trials with noncompliance and completely nonignorable missing data.
Biometrics. 2009 Sep;65(3):675-82. doi: 10.1111/j.1541-0420.2008.01120.x. Epub 2008 Aug 28.
4
Concerns relating to the conduct and statistical analysis of the Multicenter Selective Lymphadenectomy Trial (MSLT-1) in patients with melanoma.
J Plast Reconstr Aesthet Surg. 2009 Apr;62(4):442-6. doi: 10.1016/j.bjps.2009.01.027. Epub 2009 Feb 26.
6
Performance of statistical methods for analysing survival data in the presence of non-random compliance.
Stat Med. 2010 Dec 20;29(29):2994-3003. doi: 10.1002/sim.4070. Epub 2010 Oct 20.
7
Semiparametric estimation of the accelerated failure time model with partly interval-censored data.
Biometrics. 2017 Dec;73(4):1161-1168. doi: 10.1111/biom.12700. Epub 2017 Apr 25.
8
Discussion of "Identifiability and estimation of causal effects in randomized trials with noncompliance and completely nonignorable missing data".
Biometrics. 2009 Sep;65(3):682-6; discussion 689-91. doi: 10.1111/j.1541-0420.2008.01121.x. Epub 2008 Aug 28.
9

引用本文的文献

1
Identifying Heterogeneous Effect using Latent Supervised Clustering with Adaptive Fusion.
J Comput Graph Stat. 2021;30(1):43-54. doi: 10.1080/10618600.2020.1763808. Epub 2020 Jun 30.
2
Inferring latent heterogeneity using many feature variables supervised by survival outcome.
Stat Med. 2021 Jun 15;40(13):3181-3195. doi: 10.1002/sim.8972. Epub 2021 Apr 5.
3
A semiparametric linear transformation model to estimate causal effects for survival data.
Can J Stat. 2014 Mar;42(1):18-35. doi: 10.1002/cjs.11198. Epub 2013 Nov 14.
5
Sentinel lymph node biopsy followed by lymph node dissection for localised primary cutaneous melanoma.
Cochrane Database Syst Rev. 2015 May 16;2015(5):CD010307. doi: 10.1002/14651858.CD010307.pub2.
7
SLNB in melanoma-DFS a true and cost-effective benefit?
Nat Rev Clin Oncol. 2014 Nov;11(11). doi: 10.1038/nrclinonc.2014.65-c3. Epub 2014 Oct 14.
8
MSLT-I-response of clinical trial investigators.
Nat Rev Clin Oncol. 2014 Nov;11(11). doi: 10.1038/nrclinonc.2014.65-c1. Epub 2014 Oct 14.
9
Challenges and solutions to pre- and post-randomization subgroup analyses.
Curr Cardiol Rep. 2014;16(10):531. doi: 10.1007/s11886-014-0531-2.
10
Sentinel lymph node biopsy for melanoma: a plea to let the data be heard.
Ann Surg Oncol. 2014 Oct;21(11):3362-4. doi: 10.1245/s10434-014-3967-0. Epub 2014 Aug 8.

本文引用的文献

2
A method to estimate treatment efficacy among latent subgroups of a randomized clinical trial.
Stat Med. 2011 Mar 30;30(7):709-17. doi: 10.1002/sim.4131. Epub 2010 Nov 30.
3
Statistics in medicine--reporting of subgroup analyses in clinical trials.
N Engl J Med. 2007 Nov 22;357(21):2189-94. doi: 10.1056/NEJMsr077003.
4
Sentinel-node biopsy or nodal observation in melanoma.
N Engl J Med. 2006 Sep 28;355(13):1307-17. doi: 10.1056/NEJMoa060992.
5
The challenge of subgroup analyses--reporting without distorting.
N Engl J Med. 2006 Apr 20;354(16):1667-9. doi: 10.1056/NEJMp068070.
6
Likelihood methods for treatment noncompliance and subsequent nonresponse in randomized trials.
Biometrics. 2005 Jun;61(2):325-34. doi: 10.1111/j.1541-0420.2005.040313.x.
7
An extended general location model for causal inferences from data subject to noncompliance and missing values.
Biometrics. 2004 Sep;60(3):598-607. doi: 10.1111/j.0006-341X.2004.00208.x.
8
Analyzing a randomized trial on breast self-examination with noncompliance and missing outcomes.
Biostatistics. 2004 Apr;5(2):207-22. doi: 10.1093/biostatistics/5.2.207.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验