Yushkevich Paul, Joshi Sarang, Pizer Stephen M, Csernansky John G, Wang Lei E
Medical Image Display and Analysis Group, University of North Carolina, Chapel Hill, NC, USA
Inf Process Med Imaging. 2003 Jul;18:114-25. doi: 10.1007/978-3-540-45087-0_10.
This paper introduces a method for selecting subsets of relevant statistical features in biological shape-based classification problems. The method builds upon existing feature selection methodology by introducing a heuristic that favors the geometric locality of the selected features. This heuristic effectively reduces the combinatorial search space of the feature selection problem. The new method is tested on synthetic data and on clinical data from a study of hippocampal shape in schizophrenia. Results on clinical data indicate that features describing the head of the right hippocampus are most relevant for discrimination.
本文介绍了一种在基于生物形状的分类问题中选择相关统计特征子集的方法。该方法在现有特征选择方法的基础上,引入了一种有利于所选特征几何局部性的启发式方法。这种启发式方法有效地减少了特征选择问题的组合搜索空间。新方法在合成数据和来自一项精神分裂症海马形状研究的临床数据上进行了测试。临床数据的结果表明,描述右侧海马头部的特征对于区分最为相关。