Suppr超能文献

基于形状的生物对象分类的特征选择

Feature selection for shape-based classification of biological objects.

作者信息

Yushkevich Paul, Joshi Sarang, Pizer Stephen M, Csernansky John G, Wang Lei E

机构信息

Medical Image Display and Analysis Group, University of North Carolina, Chapel Hill, NC, USA

出版信息

Inf Process Med Imaging. 2003 Jul;18:114-25. doi: 10.1007/978-3-540-45087-0_10.

Abstract

This paper introduces a method for selecting subsets of relevant statistical features in biological shape-based classification problems. The method builds upon existing feature selection methodology by introducing a heuristic that favors the geometric locality of the selected features. This heuristic effectively reduces the combinatorial search space of the feature selection problem. The new method is tested on synthetic data and on clinical data from a study of hippocampal shape in schizophrenia. Results on clinical data indicate that features describing the head of the right hippocampus are most relevant for discrimination.

摘要

本文介绍了一种在基于生物形状的分类问题中选择相关统计特征子集的方法。该方法在现有特征选择方法的基础上,引入了一种有利于所选特征几何局部性的启发式方法。这种启发式方法有效地减少了特征选择问题的组合搜索空间。新方法在合成数据和来自一项精神分裂症海马形状研究的临床数据上进行了测试。临床数据的结果表明,描述右侧海马头部的特征对于区分最为相关。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验