Suppr超能文献

基于机器学习方法的阿尔茨海默病海马体形状分析

Hippocampal shape analysis of Alzheimer disease based on machine learning methods.

作者信息

Li S, Shi F, Pu F, Li X, Jiang T, Xie S, Wang Y

机构信息

Department of Bioengineering, Beijing University of Aeronautics and Astronautics, and Department of Radiology, Peking University First Hospital, Beijing, People's Republic of China.

出版信息

AJNR Am J Neuroradiol. 2007 Aug;28(7):1339-45. doi: 10.3174/ajnr.A0620.

Abstract

BACKGROUND AND PURPOSE

Alzheimer disease (AD) is a neurodegenerative disease characterized by progressive dementia. The hippocampus is particularly vulnerable to damage at the very earliest stages of AD. This article seeks to evaluate critical AD-associated regional changes in the hippocampus using machine learning methods.

MATERIALS AND METHODS

High-resolution MR images were acquired from 19 patients with AD and 20 age- and sex-matched healthy control subjects. Regional changes of bilateral hippocampi were characterized using computational anatomic mapping methods. A feature selection method for support vector machine and leave-1-out cross-validation was introduced to determine regional shape differences that minimized the error rate in the datasets.

RESULTS

Patients with AD showed significant deformations in the CA1 region of bilateral hippocampi, as well as the subiculum of the left hippocampus. There were also some changes in the CA2-4 subregions of the left hippocampus among patients with AD. Moreover, the left hippocampal surface showed greater variations than the right compared with those in healthy control subjects. The accuracies of leave-1-out cross-validation and 3-fold cross-validation experiments for assessing the reliability of these subregions were more than 80% in bilateral hippocampi.

CONCLUSION

Subtle and spatially complex deformation patterns of hippocampus between patients with AD and healthy control subjects can be detected by machine learning methods.

摘要

背景与目的

阿尔茨海默病(AD)是一种以进行性痴呆为特征的神经退行性疾病。海马体在AD的最早期阶段特别容易受到损伤。本文旨在使用机器学习方法评估海马体中与AD相关的关键区域变化。

材料与方法

从19例AD患者和20例年龄及性别匹配的健康对照者中获取高分辨率MR图像。使用计算解剖映射方法对双侧海马体的区域变化进行表征。引入一种支持向量机的特征选择方法和留一法交叉验证,以确定能使数据集中错误率最小化的区域形状差异。

结果

AD患者双侧海马体的CA1区域以及左侧海马体的下托出现明显变形。AD患者左侧海马体的CA2 - 4子区域也有一些变化。此外,与健康对照者相比,左侧海马体表面的变化比右侧更大。双侧海马体中用于评估这些子区域可靠性的留一法交叉验证和3折交叉验证实验的准确率均超过80%。

结论

通过机器学习方法可以检测出AD患者与健康对照者之间海马体细微且空间复杂的变形模式。

相似文献

1
Hippocampal shape analysis of Alzheimer disease based on machine learning methods.
AJNR Am J Neuroradiol. 2007 Aug;28(7):1339-45. doi: 10.3174/ajnr.A0620.
2
Bayesian longitudinal segmentation of hippocampal substructures in brain MRI using subject-specific atlases.
Neuroimage. 2016 Nov 1;141:542-555. doi: 10.1016/j.neuroimage.2016.07.020. Epub 2016 Jul 15.
9
Direct mapping of hippocampal surfaces with intrinsic shape context.
Neuroimage. 2007 Sep 1;37(3):792-807. doi: 10.1016/j.neuroimage.2007.05.016. Epub 2007 May 23.
10
Improved reliability of hippocampal atrophy rate measurement in mild cognitive impairment using fluid registration.
Neuroimage. 2007 Feb 1;34(3):1036-41. doi: 10.1016/j.neuroimage.2006.10.033. Epub 2006 Dec 15.

引用本文的文献

1
Current Clinical Applications of Structural MRI in Neurological Disorders.
J Clin Neurol. 2025 Jul;21(4):277-293. doi: 10.3988/jcn.2025.0185.
2
A PARTIALLY FUNCTIONAL LINEAR REGRESSION FRAMEWORK FOR INTEGRATING GENETIC, IMAGING, AND CLINICAL DATA.
Ann Appl Stat. 2024 Mar;18(1):704-728. doi: 10.1214/23-aoas1808. Epub 2024 Jan 31.
3
Relationship between hippocampal subfield volumes and cognitive decline in healthy subjects.
Front Aging Neurosci. 2023 Dec 7;15:1284619. doi: 10.3389/fnagi.2023.1284619. eCollection 2023.
4
Mapping the Genetic-Imaging-Clinical Pathway with Applications to Alzheimer's Disease.
J Am Stat Assoc. 2022;117(540):1656-1668. doi: 10.1080/01621459.2022.2087658. Epub 2022 Jul 19.
5
Computer-Aided Detection and Diagnosis of Neurological Disorder.
Cureus. 2022 Aug 15;14(8):e28032. doi: 10.7759/cureus.28032. eCollection 2022 Aug.
6
Neuroanatomical substrates of maximizing tendency in decision-making: a voxel-based morphometric study.
Brain Imaging Behav. 2022 Oct;16(5):1938-1945. doi: 10.1007/s11682-022-00656-3. Epub 2022 May 19.
7
Research on Pathogenic Hippocampal Voxel Detection in Alzheimer's Disease Using Clustering Genetic Random Forest.
Front Psychiatry. 2022 Apr 7;13:861258. doi: 10.3389/fpsyt.2022.861258. eCollection 2022.
8
Assessment of brain connectome alterations in male chronic smokers using structural and generalized q-sampling MRI.
Brain Imaging Behav. 2022 Aug;16(4):1761-1775. doi: 10.1007/s11682-022-00647-4. Epub 2022 Mar 16.
9
The Road to Personalized Medicine in Alzheimer's Disease: The Use of Artificial Intelligence.
Biomedicines. 2022 Jan 29;10(2):315. doi: 10.3390/biomedicines10020315.

本文引用的文献

1
Automated surface matching using mutual information applied to Riemann surface structures.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):666-74. doi: 10.1007/11566489_82.
2
Neuroanatomical predictors of response to donepezil therapy in patients with dementia.
Arch Neurol. 2005 Nov;62(11):1718-22. doi: 10.1001/archneur.62.11.1718.
3
Abnormalities of hippocampal surface structure in very mild dementia of the Alzheimer type.
Neuroimage. 2006 Mar;30(1):52-60. doi: 10.1016/j.neuroimage.2005.09.017. Epub 2005 Oct 21.
4
Hippocampal shape analysis using medial surfaces.
Neuroimage. 2005 May 1;25(4):1077-89. doi: 10.1016/j.neuroimage.2004.12.051.
5
Preclinical detection of Alzheimer's disease: hippocampal shape and volume predict dementia onset in the elderly.
Neuroimage. 2005 Apr 15;25(3):783-92. doi: 10.1016/j.neuroimage.2004.12.036.
6
Verbal episodic memory impairment in Alzheimer's disease: a combined structural and functional MRI study.
Neuroimage. 2005 Mar;25(1):253-66. doi: 10.1016/j.neuroimage.2004.10.045. Epub 2004 Dec 10.
7
Quantitative magnetic resonance techniques as surrogate markers of Alzheimer's disease.
NeuroRx. 2004 Apr;1(2):196-205. doi: 10.1602/neurorx.1.2.196.
8
Feature selection for shape-based classification of biological objects.
Inf Process Med Imaging. 2003 Jul;18:114-25. doi: 10.1007/978-3-540-45087-0_10.
9
Mapping hippocampal and ventricular change in Alzheimer disease.
Neuroimage. 2004 Aug;22(4):1754-66. doi: 10.1016/j.neuroimage.2004.03.040.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验