Nguyen Minhtri K, Kurtz Ira
Division of Nephrology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Rm. 7-155 Factor Bldg., Los Angeles, CA 90095, USA.
Am J Physiol Renal Physiol. 2005 Jan;288(1):F1-7. doi: 10.1152/ajprenal.00259.2004. Epub 2004 Sep 21.
In evaluating the renal mechanisms responsible for the generation of the dysnatremias, an analysis of free water clearance (FWC) and electrolyte-free water clearance (EFWC) is often utilized to characterize the rate of urinary free water excretion in these disorders. Previous analyses of FWC and EFWC have failed to consider the relationship among plasma water Na(+) concentration (Na(+)), total exchangeable Na(+) (Na(e)), total exchangeable K(+) (K(e)), and total body water (TBW); (Edelman IS, Leibman J, O'Meara MP, and Birkenfeld LW. J Clin Invest 37: 1236-1256, 1958). In their derivations, the classic FWC and EFWC formulas fail to consider the quantitative and physiological significance of the slope and y-intercept in this equation. Consequently, previous EFWC formulas incorrectly assume that urine is isonatric when Na(+) + K(+) = Na(+) or Na(+) + K(+) = Na(+) + K(+) (where Na(+) and K(+) represent plasma Na(+) and K(+) concentrations, respectively). Moreover, previous formulas cannot be utilized in the setting of hyperglycemia. In this article, we have derived a new formula termed modified electrolyte-free water clearance (MEFWC) for determining the electrolyte-free water clearance, taking into consideration the empirical relationship between the Na(+) and Na(e), K(e), and TBW: MEFWC = V [1 - 1.03Na(+) + K(+)/(Na(+) + 23.8)]. MEFWC, unlike previous formulas, is derived based on the requirement of the Edelman equation that urine is isonatric only when Na(+) + K(+) = (Na(e) + K(e))/TBW = 0.97Na(+) + 23.1. Furthermore, since we have shown that the y-intercept in the Edelman equation varies directly with the plasma glucose concentration, in patients with hyperglycemia, MEFWC = V [1 - 1.03Na(+) + K(+)/{Na(+) + 23.8 + (1.6/100)(glucose - 120)}]. The MEFWC formula will be especially useful in assessing the renal contribution to the generation of the dysnatremias.
在评估导致钠代谢紊乱的肾脏机制时,常常利用对自由水清除率(FWC)和无电解质自由水清除率(EFWC)的分析来描述这些疾病中尿自由水的排泄速率。以往对FWC和EFWC的分析未能考虑血浆水钠浓度(Na⁺)、可交换钠总量(Na(e))、可交换钾总量(K(e))和总体水(TBW)之间的关系;(埃德尔曼IS、莱布曼J、奥米拉MP和伯克费尔德LW。《临床研究杂志》37: 1236 - 1256,1958年)。在其推导过程中,经典的FWC和EFWC公式未能考虑该方程中斜率和y轴截距的定量及生理学意义。因此,以往的EFWC公式错误地假定当Na⁺ + K⁺=Na⁺或Na⁺ + K⁺=Na⁺+K⁺时(其中Na⁺和K⁺分别代表血浆钠和钾浓度),尿液是等渗的。此外,以往的公式在高血糖情况下无法使用。在本文中,我们推导了一个新的公式,称为改良无电解质自由水清除率(MEFWC),用于确定无电解质自由水清除率,同时考虑了Na⁺与Na(e)、K(e)和TBW之间的经验关系:MEFWC = V [1 - 1.03Na⁺ + K⁺/(Na⁺+23.8)]。与以往公式不同,MEFWC是基于埃德尔曼方程的要求推导出来的,即只有当Na⁺ + K⁺=(Na(e)+K(e))/TBW = 0.97Na⁺+23.1时,尿液才是等渗的。此外,由于我们已经表明埃德尔曼方程中的y轴截距与血浆葡萄糖浓度直接相关,在高血糖患者中,MEFWC = V [1 - 1.03Na⁺ + K⁺/{Na⁺+23.8+(1.6/100)(葡萄糖-120)}]。MEFWC公式在评估肾脏对钠代谢紊乱发生的作用方面将特别有用。