Kuncel Alexis M, Grill Warren M
Department of Biomedical Engineering, Duke University, Box 90281, Durham, NC 27708-0281, USA.
Clin Neurophysiol. 2004 Nov;115(11):2431-41. doi: 10.1016/j.clinph.2004.05.031.
To provide an analysis of stimulation parameters for deep brain stimulation (DBS).
Synthesis of theoretical and empirical findings is used to provide guidance for the selection of stimulus parameters. Finite element modeling is used to investigate the effects of contact location and electrode geometry on the electric field, and to estimate the effects of current density distribution on the limit for non-damaging stimulation.
Anatomical targeting of DBS electrodes is complicated by the uncertainty of which neural elements are targeted and differences in the electric field distribution in fiber tracts and nuclei. Electrical targeting by selection of electrode geometry and stimulus waveform can alter the distribution of the electric field and control neural activation. The recommended charge density limit for DBS represents a liberal estimate for non-damaging stimulation. Short duration stimulus pulses reduce charge injection and increase the therapeutic window between therapeutic effects and side effects.
There are several challenges to developing rational methods of selecting stimulus parameters including a large number of degrees of freedom, the unknown effects of stimulation, and the complexity of the responses.
Understanding the fundamentals of electrical stimulation of the nervous system enables rational selection of stimulus parameters.
对深部脑刺激(DBS)的刺激参数进行分析。
综合理论和实证研究结果,为刺激参数的选择提供指导。采用有限元建模来研究接触位置和电极几何形状对电场的影响,并估计电流密度分布对非损伤性刺激极限的影响。
由于所靶向的神经元件不确定以及纤维束和核中电场分布存在差异,DBS电极的解剖学靶向变得复杂。通过选择电极几何形状和刺激波形进行电靶向可改变电场分布并控制神经激活。DBS推荐的电荷密度极限代表了非损伤性刺激的宽松估计。短持续时间的刺激脉冲可减少电荷注入并增加治疗效果与副作用之间的治疗窗口。
开发合理的刺激参数选择方法面临诸多挑战,包括大量的自由度、刺激的未知影响以及反应的复杂性。
了解神经系统电刺激的基本原理有助于合理选择刺激参数。