Bian Hongjin, Hammer Juergen
Section of Bioinformatics, Genetics and Genomics, Hoffmann-La Roche Inc., Nutley, New Jersey, USA.
Methods. 2004 Dec;34(4):468-75. doi: 10.1016/j.ymeth.2004.06.002.
TEPITOPE is a prediction model that has been successfully applied to the in silico identification of T cell epitopes in the context of oncology, allergy, infectious diseases, and autoimmune diseases. Like most epitope prediction models, TEPITOPE's underlying algorithm is based on the prediction of HLA-II peptide binding, which constitutes a major bottleneck in the natural selection of epitopes. An important step in the design of subunit vaccines is the identification of promiscuous HLA-II ligands in sets of disease-specific gene products. TEPITOPE's user interface enables the systematic prediction of promiscuous peptide ligands for a broad range of HLA-binding specificity. We show how to apply the TEPITOPE prediction model to identify T cell epitopes, and provide both a road map and examples of its successful application.
TEPITOPE是一种预测模型,已成功应用于在肿瘤学、过敏、传染病和自身免疫性疾病背景下的T细胞表位的计算机识别。与大多数表位预测模型一样,TEPITOPE的基础算法基于HLA-II肽结合的预测,这是表位自然选择中的一个主要瓶颈。亚单位疫苗设计中的一个重要步骤是在疾病特异性基因产物组中识别多反应性HLA-II配体。TEPITOPE的用户界面能够对广泛的HLA结合特异性进行多反应性肽配体的系统预测。我们展示了如何应用TEPITOPE预测模型来识别T细胞表位,并提供了路线图及其成功应用的示例。