Suppr超能文献

严重急性呼吸综合征冠状病毒刺突蛋白四级组装的预测

Prediction of quaternary assembly of SARS coronavirus peplomer.

作者信息

Bernini Andrea, Spiga Ottavia, Ciutti Arianna, Chiellini Stefano, Bracci Luisa, Yan Xiyun, Zheng Bojian, Huang Jiandong, He Ming-Liang, Song Huai-Dong, Hao Pei, Zhao Guoping, Niccolai Neri

机构信息

Department of Molecular Biology, Biomolecular Structure Research Center, University of Siena, I-53100 Siena, Italy.

出版信息

Biochem Biophys Res Commun. 2004 Dec 24;325(4):1210-4. doi: 10.1016/j.bbrc.2004.10.156.

Abstract

The tertiary structures of the S1 and S2 domains of the spike protein of the coronavirus which is responsible of the severe acute respiratory syndrome (SARS) have been recently predicted. Here a molecular assembly of SARS coronavirus peplomer which accounts for the available functional data is suggested. The interaction between S1 and S2 appears to be stabilised by a large hydrophobic network of aromatic side chains present in both domains. This feature results to be common to all coronaviruses, suggesting potential targeting for drugs preventing coronavirus-related infections.

摘要

导致严重急性呼吸综合征(SARS)的冠状病毒刺突蛋白S1和S2结构域的三级结构最近已被预测出来。本文提出了一种SARS冠状病毒纤突的分子组装体,它能够解释现有的功能数据。S1和S2之间的相互作用似乎通过两个结构域中均存在的一个由芳香族侧链构成的大型疏水网络得以稳定。这一特征在所有冠状病毒中都很常见,这表明可能存在预防冠状病毒相关感染的药物潜在靶点。

相似文献

1
Prediction of quaternary assembly of SARS coronavirus peplomer.
Biochem Biophys Res Commun. 2004 Dec 24;325(4):1210-4. doi: 10.1016/j.bbrc.2004.10.156.
2
Dissection of the fusion machine of SARS-coronavirus.
Adv Exp Med Biol. 2006;581:319-22. doi: 10.1007/978-0-387-33012-9_56.
3
Evidence for a common evolutionary origin of coronavirus spike protein receptor-binding subunits.
J Virol. 2012 Mar;86(5):2856-8. doi: 10.1128/JVI.06882-11. Epub 2011 Dec 28.
6
Core structure of S2 from the human coronavirus NL63 spike glycoprotein.
Biochemistry. 2006 Dec 26;45(51):15205-15. doi: 10.1021/bi061686w. Epub 2006 Dec 1.
8
Interaction between the spike protein of human coronavirus NL63 and its cellular receptor ACE2.
Adv Exp Med Biol. 2006;581:281-4. doi: 10.1007/978-0-387-33012-9_47.
9
Crystallization and preliminary crystallographic analysis of the heptad-repeat complex of SARS coronavirus spike protein.
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 2):2377-9. doi: 10.1107/S0907444904027258. Epub 2004 Nov 26.
10
Reasoning of spike glycoproteins being more vulnerable to mutations among 158 coronavirus proteins from different species.
J Mol Model. 2005 Feb;11(1):8-16. doi: 10.1007/s00894-004-0210-0. Epub 2004 Dec 9.

引用本文的文献

1
Molecular dynamics of Middle East Respiratory Syndrome Coronavirus (MERS CoV) fusion heptad repeat trimers.
Comput Biol Chem. 2018 Aug;75:205-212. doi: 10.1016/j.compbiolchem.2018.05.020. Epub 2018 May 17.
2
Genomic and evolutionary inferences between American and global strains of porcine epidemic diarrhea virus.
Prev Vet Med. 2016 Jan 1;123:175-184. doi: 10.1016/j.prevetmed.2015.10.020. Epub 2015 Nov 10.
4
Mechanisms of coronavirus cell entry mediated by the viral spike protein.
Viruses. 2012 Jun;4(6):1011-33. doi: 10.3390/v4061011. Epub 2012 Jun 20.
5
SARS-coronavirus spike S2 domain flanked by cysteine residues C822 and C833 is important for activation of membrane fusion.
Virology. 2009 Oct 25;393(2):265-71. doi: 10.1016/j.virol.2009.07.038. Epub 2009 Aug 29.
7
Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection.
Clin Microbiol Rev. 2007 Oct;20(4):660-94. doi: 10.1128/CMR.00023-07.
8
SARS molecular epidemiology: a Chinese fairy tale of controlling an emerging zoonotic disease in the genomics era.
Philos Trans R Soc Lond B Biol Sci. 2007 Jun 29;362(1482):1063-81. doi: 10.1098/rstb.2007.2034.
10
Kinetics and synergistic effects of siRNAs targeting structural and replicase genes of SARS-associated coronavirus.
FEBS Lett. 2006 May 1;580(10):2414-20. doi: 10.1016/j.febslet.2006.03.066. Epub 2006 Mar 30.

本文引用的文献

3
Structural basis for coronavirus-mediated membrane fusion. Crystal structure of mouse hepatitis virus spike protein fusion core.
J Biol Chem. 2004 Jul 16;279(29):30514-22. doi: 10.1074/jbc.M403760200. Epub 2004 Apr 27.
5
The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world.
Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3792-6. doi: 10.1073/pnas.0307877101. Epub 2004 Mar 8.
6
A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2.
J Biol Chem. 2004 Jan 30;279(5):3197-201. doi: 10.1074/jbc.C300520200. Epub 2003 Dec 11.
7
Molecular model of SARS coronavirus polymerase: implications for biochemical functions and drug design.
Nucleic Acids Res. 2003 Dec 15;31(24):7117-30. doi: 10.1093/nar/gkg916.
8
The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor.
Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13190-5. doi: 10.1073/pnas.1835675100. Epub 2003 Oct 29.
9
Molecular modelling of S1 and S2 subunits of SARS coronavirus spike glycoprotein.
Biochem Biophys Res Commun. 2003 Oct 10;310(1):78-83. doi: 10.1016/j.bbrc.2003.08.122.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验