Suppr超能文献

基于对称导数和广义结构张量的识别

Recognition by symmetry derivatives and the generalized structure tensor.

作者信息

Bigun Josef, Bigun Tomas, Nilsson Kenneth

机构信息

Halmstad University, Box 823, SE-30118, Halmstad, Sweden.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2004 Dec;26(12):1590-605. doi: 10.1109/TPAMI.2004.126.

Abstract

We suggest a set of complex differential operators that can be used to produce and filter dense orientation (tensor) fields for feature extraction, matching, and pattern recognition. We present results on the invariance properties of these operators, that we call symmetry derivatives. These show that, in contrast to ordinary derivatives, all orders of symmetry derivatives of Gaussians yield a remarkable invariance: They are obtained by replacing the original differential polynomial with the same polynomial, but using ordinary coordinates x and y corresponding to partial derivatives. Moreover, the symmetry derivatives of Gaussians are closed under the convolution operator and they are invariant to the Fourier transform. The equivalent of the structure tensor, representing and extracting orientations of curve patterns, had previously been shown to hold in harmonic coordinates in a nearly identical manner. As a result, positions, orientations, and certainties of intricate patterns, e.g., spirals, crosses, parabolic shapes, can be modeled by use of symmetry derivatives of Gaussians with greater analytical precision as well as computational efficiency. Since Gaussians and their derivatives are utilized extensively in image processing, the revealed properties have practical consequences for local orientation based feature extraction. The usefulness of these results is demonstrated by two applications: 1) tracking cross markers in long image sequences from vehicle crash tests and 2) alignment of noisy fingerprints.

摘要

我们提出了一组复微分算子,可用于生成和过滤密集方向(张量)场,以进行特征提取、匹配和模式识别。我们展示了这些算子的不变性属性的结果,我们将其称为对称导数。这些结果表明,与普通导数不同,高斯函数的所有阶对称导数都具有显著的不变性:它们是通过用相同的多项式替换原始微分多项式得到的,但使用对应于偏导数的普通坐标x和y。此外,高斯函数的对称导数在卷积算子下是封闭的,并且它们对傅里叶变换是不变的。之前已经证明,代表和提取曲线模式方向的结构张量的等效物在调和坐标中以几乎相同的方式成立。因此,复杂模式(如螺旋、十字、抛物线形状)的位置、方向和确定性可以通过使用高斯函数的对称导数以更高的分析精度和计算效率进行建模。由于高斯函数及其导数在图像处理中被广泛使用,所揭示的属性对于基于局部方向的特征提取具有实际意义。通过两个应用展示了这些结果的实用性:1)在车辆碰撞测试的长图像序列中跟踪十字标记;2)对齐有噪声的指纹。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验