Suppr超能文献

Effects of single-pulse (< or = 1 ps) X-rays from laser-produced plasmas on mammalian cells.

作者信息

Shinohara Kunio, Nakano Hisako, Miyazaki Noriyuki, Tago Masao, Kodama Ryosuke

机构信息

Radiation Research Institute, Graduate School of Medicine, The University of Tokyo, Japan.

出版信息

J Radiat Res. 2004 Dec;45(4):509-14. doi: 10.1269/jrr.45.509.

Abstract

The effects of low linear energy transfer (LET) radiation on mammalian cells have been studied at dose-rates as high as 10(9) Gy/sec delivered as a single 3-nanosecond pulse, and no increase in cytotoxicity was shown compared with delivery at a conventional dose-rate. There have been no observations on the effects of radiation delivered at even higher dose-rates on the picosecond time-scale. Here we examined, for the first time, the effects on cultured mouse L5178Y cells and its radiosensitive XRCC4-deficient mutant M10 cells of sub-picosecond X-rays emitted from laser-produced plasmas at the ultrahigh dose-rate of 10(12)-10(13) Gy/sec. No increase in the sensitivity to the X-rays was observed compared with gamma-rays at a conventional dose-rate. The increase in the sensitivity of L5178Y cells by labeling with 5-iododeoxyuridine was smaller than those irradiated with gamma-rays at a conventional dose-rate, while the difference was apparently the reverse in M10 cells. The D10 ratio between L5178Y cells and M10 cells produced by the X-rays at temporally dense ionization was the same as that produced by X(gamma)-rays at the conventional dose-rate, while the ratio is greatly reduced in the case of particle radiation. These results suggest that there is no increase in the cytotoxic effects of X-rays at dose-rates as high as 10(13) Gy/sec, and that the increased cytotoxicity of particle radiation is not attributable to temporally dense ionization. It is discussed that the mechanism for the induction of radiation damage responsible for cytotoxicity may be slightly modified at ultrahigh dose-rates.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验