Suppr超能文献

在重复基因进化过程中,快速的亚功能化伴随着长期且大量的新功能化。

Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution.

作者信息

He Xionglei, Zhang Jianzhi

机构信息

Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.

出版信息

Genetics. 2005 Feb;169(2):1157-64. doi: 10.1534/genetics.104.037051. Epub 2005 Jan 16.

Abstract

Gene duplication is the primary source of new genes. Duplicate genes that are stably preserved in genomes usually have divergent functions. The general rules governing the functional divergence, however, are not well understood and are controversial. The neofunctionalization (NF) hypothesis asserts that after duplication one daughter gene retains the ancestral function while the other acquires new functions. In contrast, the subfunctionalization (SF) hypothesis argues that duplicate genes experience degenerate mutations that reduce their joint levels and patterns of activity to that of the single ancestral gene. We here show that neither NF nor SF alone adequately explains the genome-wide patterns of yeast protein interaction and human gene expression for duplicate genes. Instead, our analysis reveals rapid SF, accompanied by prolonged and substantial NF in a large proportion of duplicate genes, suggesting a new model termed subneofunctionalization (SNF). Our results demonstrate that enormous numbers of new functions have originated via gene duplication.

摘要

基因复制是新基因的主要来源。稳定保存在基因组中的复制基因通常具有不同的功能。然而,关于功能分化的一般规则尚未得到充分理解,且存在争议。新功能化(NF)假说认为,复制后一个子代基因保留祖先功能,而另一个获得新功能。相反,亚功能化(SF)假说认为,复制基因经历退化突变,使其联合活性水平和模式降低至单个祖先基因的水平。我们在此表明,单独的NF或SF都不能充分解释酵母蛋白质相互作用和人类基因表达在全基因组范围内关于复制基因的模式。相反,我们的分析揭示了快速的亚功能化,同时在很大一部分复制基因中伴随着长时间且大量的新功能化,这表明了一种称为亚新功能化(SNF)的新模型。我们的结果表明,大量新功能是通过基因复制产生的。

相似文献

1
Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution.
Genetics. 2005 Feb;169(2):1157-64. doi: 10.1534/genetics.104.037051. Epub 2005 Jan 16.
3
Large scale of human duplicate genes divergence.
J Mol Evol. 2012 Aug;75(1-2):25-33. doi: 10.1007/s00239-012-9516-1. Epub 2012 Aug 25.
5
The probability of duplicate gene preservation by subfunctionalization.
Genetics. 2000 Jan;154(1):459-73. doi: 10.1093/genetics/154.1.459.
6
The limits of subfunctionalization.
BMC Evol Biol. 2007 Nov 7;7:213. doi: 10.1186/1471-2148-7-213.
9
Preservation of duplicate genes by complementary, degenerative mutations.
Genetics. 1999 Apr;151(4):1531-45. doi: 10.1093/genetics/151.4.1531.
10
Gene duplication and the adaptive evolution of a classic genetic switch.
Nature. 2007 Oct 11;449(7163):677-81. doi: 10.1038/nature06151.

引用本文的文献

1
Two genes control sperm formation and male fertility in mice.
bioRxiv. 2025 Jul 22:2025.07.18.665465. doi: 10.1101/2025.07.18.665465.
3
A GATA factor radiation in rewired the endoderm specification network.
bioRxiv. 2025 May 12:2022.05.20.492851. doi: 10.1101/2022.05.20.492851.
4
Convergent expansions of keystone gene families drive metabolic innovation in Saccharomycotina yeasts.
Proc Natl Acad Sci U S A. 2025 Jun 10;122(23):e2500165122. doi: 10.1073/pnas.2500165122. Epub 2025 Jun 3.
7
Ectopic Gene Conversion Causing Quantitative Trait Variation.
Mol Biol Evol. 2025 Apr 30;42(5). doi: 10.1093/molbev/msaf086.
9
Genome-Wide Identification and Evolutionary Analysis of Functional Genes in Plant Species.
Genes (Basel). 2024 Dec 17;15(12):1614. doi: 10.3390/genes15121614.
10
A de novo Gene Promotes Seed Germination Under Drought Stress in Arabidopsis.
Mol Biol Evol. 2025 Jan 6;42(1). doi: 10.1093/molbev/msae262.

本文引用的文献

1
Molecular evolution in large genetic networks: does connectivity equal constraint?
J Mol Evol. 2004 Feb;58(2):203-11. doi: 10.1007/s00239-003-2544-0.
2
Preferential duplication of conserved proteins in eukaryotic genomes.
PLoS Biol. 2004 Mar;2(3):E55. doi: 10.1371/journal.pbio.0020055. Epub 2004 Mar 16.
3
Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae.
Nature. 2004 Apr 8;428(6983):617-24. doi: 10.1038/nature02424. Epub 2004 Mar 7.
4
The early stages of duplicate gene evolution.
Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15682-7. doi: 10.1073/pnas.2535513100. Epub 2003 Dec 11.
5
The origins of genome complexity.
Science. 2003 Nov 21;302(5649):1401-4. doi: 10.1126/science.1089370.
6
Mammalian housekeeping genes evolve more slowly than tissue-specific genes.
Mol Biol Evol. 2004 Feb;21(2):236-9. doi: 10.1093/molbev/msh010. Epub 2003 Oct 31.
7
Evolution of cis-regulatory elements in duplicated genes of yeast.
Trends Genet. 2003 Aug;19(8):417-22. doi: 10.1016/S0168-9525(03)00174-4.
8
Divergence in the spatial pattern of gene expression between human duplicate genes.
Genome Res. 2003 Jul;13(7):1638-45. doi: 10.1101/gr.1133803.
9
How the global structure of protein interaction networks evolves.
Proc Biol Sci. 2003 Mar 7;270(1514):457-66. doi: 10.1098/rspb.2002.2269.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验