Suppr超能文献

藻类的发酵代谢及其进化。

Fermentation metabolism and its evolution in algae.

机构信息

Department of Plant Biology, Carnegie Institution for Science Stanford, CA, USA.

出版信息

Front Plant Sci. 2013 May 22;4:150. doi: 10.3389/fpls.2013.00150. eCollection 2013.

Abstract

Fermentation or anoxic metabolism allows unicellular organisms to colonize environments that become anoxic. Free-living unicellular algae capable of a photoautotrophic lifestyle can also use a range of metabolic circuitry associated with different branches of fermentation metabolism. While algae that perform mixed-acid fermentation are widespread, the use of anaerobic respiration is more typical of eukaryotic heterotrophs. The occurrence of a core set of fermentation pathways among the algae provides insights into the evolutionary origins of these pathways, which were likely derived from a common ancestral eukaryote. Based on genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism has been examined in more detail in Chlamydomonas reinhardtii (Chlamydomonas) than in any other photosynthetic protist. This green alga is metabolically flexible and can sustain energy generation and maintain cellular redox balance under a variety of different environmental conditions. Fermentation metabolism in Chlamydomonas appears to be highly controlled, and the flexible use of the different branches of fermentation metabolism has been demonstrated in studies of various metabolic mutants. Additionally, when Chlamydomonas ferments polysaccharides, it has the ability to eliminate part of the reductant (to sustain glycolysis) through the production of H2, a molecule that can be developed as a source of renewable energy. To date, little is known about the specific role(s) of the different branches of fermentation metabolism, how photosynthetic eukaryotes sense changes in environmental O2 levels, and the mechanisms involved in controlling these responses, at both the transcriptional and post-transcriptional levels. In this review, we focus on fermentation metabolism in Chlamydomonas and other protists, with only a brief discussion of plant fermentation when relevant, since it is thoroughly discussed in other articles in this volume.

摘要

发酵或缺氧代谢使单细胞生物能够在缺氧环境中定殖。能够进行光合作用的自由生活单细胞藻类也可以利用与不同分支发酵代谢相关的一系列代谢途径。虽然进行混合酸发酵的藻类很普遍,但无氧呼吸的使用更典型于真核异养生物。藻类中存在核心的发酵途径集为这些途径的进化起源提供了深入的了解,这些途径可能源自一个共同的祖先真核生物。基于基因组、转录组和生物化学研究,在其他光合原生生物中,比在任何其他光合原生生物中都更详细地研究了莱茵衣藻(Chlamydomonas reinhardtii)的厌氧能量代谢。这种绿藻具有代谢灵活性,能够在各种不同的环境条件下维持能量产生和细胞氧化还原平衡。在莱茵衣藻中,发酵代谢似乎受到高度控制,并且在对各种代谢突变体的研究中已经证明了不同分支发酵代谢的灵活使用。此外,当衣藻发酵多糖时,它有能力通过产生氢气来消除一部分还原剂(以维持糖酵解),氢气是一种可以开发为可再生能源的分子。迄今为止,对于发酵代谢的不同分支的具体作用、光合真核生物如何感知环境 O2 水平的变化以及在转录和转录后水平上涉及的控制这些反应的机制知之甚少。在这篇综述中,我们专注于莱茵衣藻和其他原生生物中的发酵代谢,仅在相关时简要讨论植物发酵,因为它在本卷中的其他文章中进行了深入讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecaf/3660698/137aecc48ea6/fpls-04-00150-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验