D'Alessandro Maryann, Vachtsevanos George, Esteller Rosana, Echauz Javier, Cranstoun Stephen, Worrell Greg, Parish Landi, Litt Brian
Department of Bioengineering, University of Pennsylvania, 747 West Madison Circle, Pittsburgh, Philadelphia, PA 15229, USA.
Clin Neurophysiol. 2005 Mar;116(3):506-16. doi: 10.1016/j.clinph.2004.11.014. Epub 2005 Jan 24.
To develop a prospective method for optimizing seizure prediction, given an array of implanted electrodes and a set of candidate quantitative features computed at each contact location.
The method employs a genetic-based selection process, and then tunes a probabilistic neural network classifier to predict seizures within a 10 min prediction horizon. Initial seizure and interictal data were used for training, and the remaining IEEG data were used for testing. The method continues to train and learn over time.
Validation of these results over two workshop patients demonstrated a sensitivity of 100%, and 1.1 false positives per hour for Patient E, using a 2.4s block predictor, and a failure of the method on Patient B.
This study demonstrates a prospective, exploratory implementation of a seizure prediction method designed to adapt to individual patients with a wide variety of pre-ictal patterns, implanted electrodes and seizure types. Its current performance is limited likely by the small number of input channels and quantitative features employed in this study, and segmentation of the data set into training and testing sets rather than using all continuous data available.
This technique theoretically has the potential to address the challenge presented by the heterogeneity of EEG patterns seen in medication-resistant epilepsy. A more comprehensive implementation utilizing all electrode sites, a broader feature library, and automated multi-feature fusion will be required to fully judge the method's potential for predicting seizures.
鉴于植入电极阵列以及在每个接触位置计算出的一组候选定量特征,开发一种用于优化癫痫发作预测的前瞻性方法。
该方法采用基于遗传的选择过程,然后调整概率神经网络分类器以在10分钟的预测范围内预测癫痫发作。初始癫痫发作和发作间期数据用于训练,其余颅内脑电图(IEEG)数据用于测试。该方法会随着时间持续进行训练和学习。
对两名研讨班患者的这些结果进行验证表明,对于患者E,使用2.4秒的块预测器时,灵敏度为100%,每小时有1.1次误报,而该方法对患者B无效。
本研究展示了一种癫痫发作预测方法的前瞻性探索性实施,该方法旨在适应具有各种发作前模式、植入电极和癫痫发作类型的个体患者。其当前性能可能受到本研究中使用的输入通道数量和定量特征较少以及将数据集分割为训练集和测试集而非使用所有可用连续数据的限制。
从理论上讲,该技术有潜力应对药物难治性癫痫中脑电图模式异质性带来的挑战。需要更全面地利用所有电极位点、更广泛的特征库以及自动多特征融合来充分判断该方法预测癫痫发作方面的潜力。