Suppr超能文献

癫痫发作的错误预测是否取决于警觉状态?来自两种癫痫发作预测方法的报告及提出的补救措施。

Do false predictions of seizures depend on the state of vigilance? A report from two seizure-prediction methods and proposed remedies.

作者信息

Schelter Björn, Winterhalder Matthias, Maiwald Thomas, Brandt Armin, Schad Ariane, Timmer Jens, Schulze-Bonhage Andreas

机构信息

FDM, Freiburg Center for Data Analysis and Modeling, University of Freiburg, and Epilepsy Center, University Hospital of Freiburg, Germany.

出版信息

Epilepsia. 2006 Dec;47(12):2058-70. doi: 10.1111/j.1528-1167.2006.00848.x.

Abstract

PURPOSE

Available seizure-prediction algorithms are accompanied by high numbers of false predictions to achieve high sensitivity. Little is known about the extent to which changes in EEG dynamics contribute to false predictions. This study addresses potential causes and the circadian distribution of false predictions as well as their relation to the sleep-wake cycle.

METHODS

In 21 patients, each with 24 h of interictal invasive EEG recordings, two methods, the dynamic similarity index and the mean phase coherence, were assessed with respect to time points of false predictions. Visual inspection of the invasive EEG data and additional scalp electroencephalogram data was performed at times of false predictions to identify possible correlates of changes in the EEG dynamics.

RESULTS

A dependency of false predictions on the time of day is shown. Renormalized to the duration of the period patients are asleep and awake, 86% of all false predictions occurred during sleep for the dynamic similarity index and 68% for the mean phase coherence, respectively. Combining two reference intervals, one during sleep and one in an awake state, the dynamic similarity index increases its performance by reducing the number of false predictions by almost 50% without major changes in sensitivity. No obvious dependence of false predictions was noted on visible epileptic activity, such as spikes, sharp waves, or subclinical ictal patterns.

CONCLUSIONS

Changes in the EEG dynamics related to the sleep-wake cycle contribute to limits of specificity of both seizure-prediction methods investigated. This may provide a clue for improving prediction methods in general. The combination of reference states yields promising results and may offer opportunities to increase further the performance of prediction methods.

摘要

目的

现有的癫痫发作预测算法为了达到高灵敏度,会伴随着大量的假阳性预测。关于脑电图(EEG)动态变化在多大程度上导致假阳性预测,人们了解甚少。本研究探讨了假阳性预测的潜在原因、昼夜分布及其与睡眠-觉醒周期的关系。

方法

对21例患者进行研究,每位患者均有24小时的发作间期侵入性脑电图记录,针对假阳性预测的时间点,评估了动态相似性指数和平均相位相干性这两种方法。在出现假阳性预测时,对侵入性脑电图数据和额外的头皮脑电图数据进行目视检查,以确定脑电图动态变化的可能相关因素。

结果

显示出假阳性预测与一天中的时间存在相关性。将其按患者睡眠和清醒时长进行归一化处理后,动态相似性指数的所有假阳性预测中,分别有86%发生在睡眠期间,平均相位相干性的这一比例为68%。结合两个参考区间,一个在睡眠期间,一个在清醒状态,动态相似性指数通过减少近50%的假阳性预测数量提高了其性能,且灵敏度无重大变化。未发现假阳性预测与明显的癫痫活动(如棘波、尖波或亚临床发作模式)有明显相关性。

结论

与睡眠-觉醒周期相关的脑电图动态变化导致了所研究的两种癫痫发作预测方法特异性的局限。这可能为总体上改进预测方法提供线索。参考状态的组合产生了有前景的结果,并可能为进一步提高预测方法的性能提供机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验