Suppr超能文献

开发用于肺部结节 X 射线数据集的去偏技术,以推广深度学习模型。

Development of Debiasing Technique for Lung Nodule Chest X-ray Datasets to Generalize Deep Learning Models.

机构信息

Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia.

IBM Australia Limited, Sydney, NSW 2000, Australia.

出版信息

Sensors (Basel). 2023 Jul 21;23(14):6585. doi: 10.3390/s23146585.

Abstract

Screening programs for early lung cancer diagnosis are uncommon, primarily due to the challenge of reaching at-risk patients located in rural areas far from medical facilities. To overcome this obstacle, a comprehensive approach is needed that combines mobility, low cost, speed, accuracy, and privacy. One potential solution lies in combining the chest X-ray imaging mode with federated deep learning, ensuring that no single data source can bias the model adversely. This study presents a pre-processing pipeline designed to debias chest X-ray images, thereby enhancing internal classification and external generalization. The pipeline employs a pruning mechanism to train a deep learning model for nodule detection, utilizing the most informative images from a publicly available lung nodule X-ray dataset. Histogram equalization is used to remove systematic differences in image brightness and contrast. Model training is then performed using combinations of lung field segmentation, close cropping, and rib/bone suppression. The resulting deep learning models, generated through this pre-processing pipeline, demonstrate successful generalization on an independent lung nodule dataset. By eliminating confounding variables in chest X-ray images and suppressing signal noise from the bone structures, the proposed deep learning lung nodule detection algorithm achieves an external generalization accuracy of 89%. This approach paves the way for the development of a low-cost and accessible deep learning-based clinical system for lung cancer screening.

摘要

筛查早期肺癌的方案并不常见,主要是因为难以接触到位于远离医疗机构的农村地区的高危患者。为了克服这一障碍,需要采取综合的方法,结合机动性、低成本、速度、准确性和隐私性。一种潜在的解决方案是将胸部 X 射线成像模式与联邦深度学习相结合,确保没有单一数据源会对模型产生不利影响。本研究提出了一种预处理管道,旨在对胸部 X 射线图像进行去偏,从而提高内部分类和外部泛化能力。该管道采用修剪机制来训练用于结节检测的深度学习模型,利用公共肺部结节 X 射线数据集的最有信息的图像。直方图均衡化用于消除图像亮度和对比度的系统差异。然后使用肺野分割、近距离裁剪和肋骨/骨骼抑制的组合来进行模型训练。通过这种预处理管道生成的深度学习模型,在独立的肺部结节数据集上成功实现了泛化。通过消除胸部 X 射线图像中的混杂变量并抑制来自骨骼结构的信号噪声,所提出的基于深度学习的肺部结节检测算法在外部泛化精度方面达到了 89%。该方法为开发基于深度学习的低成本、可访问的肺癌筛查临床系统铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38a1/10385599/4b3ec2b8bd00/sensors-23-06585-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验