Esfahani M Moein, Esaulov Vladislav, Venkateswara Hemanth, Calhoun Vince
Department of Computer Science, Georgia State University, Atlanta, GA.
bioRxiv. 2025 Feb 2:2025.01.29.635539. doi: 10.1101/2025.01.29.635539.
Resting-state functional MRI (rs-fMRI) provides valuable insights into brain function during rest, but faces challenges in clinical applications due to individual differences in functional connectivity. While Independent Component Analysis (ICA) is commonly used, it struggles to balance individual variations with inter-subject information. To address this, constrained ICA (cICA) approaches have been developed using templates from multiple datasets to improve accuracy and comparability. In this study, we collected rs-fMRI data from 100,517 individuals across diverse datasets. Data were preprocessed through a standard fMRI pipeline. Our method first used replicable fMRI component templates as priors in constrained ICA (the NeuroMark pipeline), then estimated dynamic functional network connectivity (dFNC). Through clustering analysis, we generated replicable dFNC states, which were then used as priors in constrained ICA to automatically estimate subject-specific states from new subjects.This approach provides a robust framework for analyzing individual rs-fMRI data while maintaining consistency across large datasets, potentially advancing clinical applications of rs-fMRI.
静息态功能磁共振成像(rs-fMRI)为静息状态下的脑功能提供了有价值的见解,但由于功能连接的个体差异,在临床应用中面临挑战。虽然独立成分分析(ICA)被广泛使用,但它难以在个体差异与受试者间信息之间取得平衡。为了解决这个问题,人们开发了约束ICA(cICA)方法,利用来自多个数据集的模板来提高准确性和可比性。在本研究中,我们从不同数据集中收集了100517名个体的rs-fMRI数据。数据通过标准的功能磁共振成像流程进行预处理。我们的方法首先在约束ICA(NeuroMark流程)中使用可复制的功能磁共振成像成分模板作为先验,然后估计动态功能网络连接性(dFNC)。通过聚类分析,我们生成了可复制的dFNC状态,然后将其用作约束ICA中的先验,以自动从新受试者中估计特定于受试者的状态。这种方法为分析个体rs-fMRI数据提供了一个强大的框架,同时在大型数据集中保持一致性,有可能推动rs-fMRI的临床应用。