Suppr超能文献

蛋白质动力学与电子转移:电子退相干和非康登效应。

Protein dynamics and electron transfer: electronic decoherence and non-Condon effects.

作者信息

Skourtis Spiros S, Balabin Ilya A, Kawatsu Tsutomu, Beratan David N

机构信息

Department of Physics, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus.

出版信息

Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3552-7. doi: 10.1073/pnas.0409047102. Epub 2005 Feb 28.

Abstract

We compute the autocorrelation function of the donor-acceptor tunneling matrix element <T(DA)(t)T(DA)(0)> for six Ru-azurin derivatives. Comparison of this decay time to the decay time of the time-dependent Franck-Condon factor {computed by Rossky and coworkers [Lockwood, D. M., Cheng, Y.-K. & Rossky, P. J. (2001) Chem. Phys. Lett. 345, 159-165]} reveals the extent to which non-Condon effects influence the electron-transfer rate. <T(DA)(t)T(DA)(0)> is studied as a function of donor-acceptor distance, tunneling pathway structure, tunneling energy, and temperature to explore the structural and dynamical origins of non-Condon effects. For azurin, the correlation function is remarkably insensitive to tunneling pathway structure. The decay time is only slightly shorter than it is for solvent-mediated electron transfer in small organic molecules and originates, largely, from fluctuations of valence angles rather than bond lengths.

摘要

我们计算了六种钌-天青蛋白衍生物的供体-受体隧穿矩阵元<T(DA)(t)T(DA)(0)>的自相关函数。将此衰减时间与时间相关的弗兰克-康登因子的衰减时间(由罗斯基及其同事计算得出[洛克伍德,D.M.,程,Y.-K.和罗斯基,P.J.(2001年)《化学物理快报》345,159 - 165])进行比较,揭示了非康登效应影响电子转移速率的程度。研究<T(DA)(t)T(DA)(0)>作为供体-受体距离、隧穿途径结构、隧穿能量和温度的函数,以探索非康登效应的结构和动力学起源。对于天青蛋白,相关函数对隧穿途径结构非常不敏感。衰减时间仅比小分子中溶剂介导的电子转移略短,并且主要源于价角的波动而非键长的波动。

相似文献

3
Steering electrons on moving pathways.引导沿移动轨迹运动的电子。
Acc Chem Res. 2009 Oct 20;42(10):1669-78. doi: 10.1021/ar900123t.
9

引用本文的文献

7
Multifaceted aspects of charge transfer.电荷转移的多方面特性。
Phys Chem Chem Phys. 2020 Oct 14;22(38):21583-21629. doi: 10.1039/d0cp01556c. Epub 2020 Aug 12.
9
Why Are DNA and Protein Electron Transfer So Different?为什么DNA和蛋白质的电子转移如此不同?
Annu Rev Phys Chem. 2019 Jun 14;70:71-97. doi: 10.1146/annurev-physchem-042018-052353. Epub 2019 Feb 6.
10
Hole Hopping Across a Protein-Protein Interface.蛋白质-蛋白质界面的穴跃
J Phys Chem B. 2019 Feb 21;123(7):1578-1591. doi: 10.1021/acs.jpcb.8b11982. Epub 2019 Feb 6.

本文引用的文献

4
Electron tunneling through proteins.电子通过蛋白质的隧穿
Q Rev Biophys. 2003 Aug;36(3):341-72. doi: 10.1017/s0033583503003913.
9
Electron transmission through molecules and molecular interfaces.电子通过分子及分子界面的传输。
Annu Rev Phys Chem. 2001;52:681-750. doi: 10.1146/annurev.physchem.52.1.681.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验