Suppr超能文献

Connexin interaction patterns in keratinocytes revealed morphologically and by FRET analysis.

作者信息

Di Wei-Li, Gu Yan, Common John E A, Aasen Trond, O'Toole Edel A, Kelsell David P, Zicha Daniel

机构信息

Centre for Cutaneous Research, Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, 4 Newark Street, London E1 2AT, UK.

出版信息

J Cell Sci. 2005 Apr 1;118(Pt 7):1505-14. doi: 10.1242/jcs.01733. Epub 2005 Mar 15.

Abstract

Multiple connexins, the major proteins of gap junctions, have overlapping expression in the human epidermis and are postulated to have a key role in keratinocyte differentiation and homeostasis. The functional importance of connexins in the epidermis is emphasised by the association of mutations in four human connexins with various hyperproliferative skin disorders. As immunohistochemistry demonstrated overlapping expression of specific connexins in keratinocytes, we performed colocalisation analyses and applied a modified FRET methodology to assess possible heteromeric interactions between different combinations of four wild-type (wt) and mutant connexins. The data generated indicate that there is evidence for multiple connexin interactions at the plasma membrane between (wt)Cx26, (wt)Cx30 and (wt)Cx31 in keratinocytes and thus, the potential for the formation of a large number of different channel types each with different channel properties. In addition, we demonstrate that the inherent in vitro trafficking defect of the skin disease mutations (D50N)Cx26 and (G11R)Cx30 can be overcome partially by the coexpression of different wild-type connexins but this rescue does not result in large gap junction aggregates at the plasma membrane. These data indicate that skin disease associated Cx26 or Cx30 mutations are likely to disrupt a number of different channel types important in distinct aspects of keratinocyte biology.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验